

NFPA Education and Technology Foundation FINAL PRESENTATION Milwaukee School of Engineering Dr. Luis A. Rodriguez April 12, 2018

Table of Contents

Introductions	3
Problem Statement and Design Objectives	4
Target Specifications	5
Research	6
Frame Selection	7
Fluid Power Circuit Design	8
Design Formulas	9
Selection of Hardware	11
Manifold	12
Simulink Model	14
Finite Element Analysis	16
Virtual Prototype	
Manufacturing	1
9 Data	
Acquisition	20
Lessons Learned	

Introduction

From Left to Right: Nick Herche, Chris Gloeckle, Paul Stran, Rob Lancaster, Juan Casiano

Problem Statement and Design Objectives

Problem Statement:

• Design and build a human powered vehicle that uses fluid power to transfer and store energy

Design Objectives:

- Integrated Design
- Simple Design
- Develop a competitive vehicle that is capable of placing in the top three designs for all events
- Reduce weight and complexity from previous team's design
- Improve the ease of how the rider operates and enters the vehicle
- Allow for a system that can be readily modified for future Senior Design teams to improve upon

Target Specifications

Sprint Race

- Achieve top speed of 25 MPH.
- Complete a 600ft course in less than 30 seconds
- Be able to pump the system to working pressure in less than 10 minutes

Efficiency Challenge

- Obtain efficiency challenge number no smaller than 150
- Achieve a system efficiency of 80%

Endurance Race

- Complete the entire race in under 4 minutes
- Be able to maneuver and turn easily
- Must be reliable enough to finish entire endurance course without needing any repairs during the event

Figure 1 Danfoss Track

Research

- Hydraulic Components
- Hydraulic Systems
- FPVC Designs
 - Includes other teams and previous MSOE team
- Regenerative Braking

Figure 2 MSOE Fluid Bike Design from 2013

Figure 3 Regenerative Braking System

Frame Selection

Table 1 Vehicle Frame Selection Matrix

CATEGORY	Performance (28%)			Efficiency (20%)			
CRITERIA	STABILITY	VERSATILITY	WEIGHT	RIDEABILITY	ROLLING RESISTANCE	COMPONENT ROUTING	AERODYNAMICS
DESCRIPTION	How the bike handles as the bike is moving.	The bikes ability to go from one event to the next (Sprint, Enduro, Efficiency) and perform well in each even without major modifications.	The weight of the frame before hydraulic modifications	The ability of the rider to easily ride the bike and pedal	The resistance that is present due to the rolling of the wheel	The ability to rout fluid lines efficiently and minimize losses	The resistance from the air as a result of movement due to the cross section of the frame and rider
METHODOLOGY	Takes into account the ability to place components on the bike without changing the center of balance, and the natural stability of the frame		Measurement from a scale	Takes into account rider position		Takes into account the lengths and shapes of the frames, which affect the length of lines, and where they can go	Takes into account the shape of the frame and the position of the rider, looked at Aerodynamics of HPV article
FRAME							
PREVIOUS FRAME (TRIKE DESIGN)	9	5	4	3	6	7	8
MOUNTAIN BIKE	6	7	7	8	7	7	6
ROAD BIKE	6	7	9	7	9	7	9
WEIGHTING FACTOR	1.4	0.8	0.6	0.5	0.6	0.4	0.5

Manufacturing (46%)		Miscellar	neous (6%)	Total		
COMPONENT SPACE	COST OF MODIFICATIONS	MODIFICATION TIME	WELDABILITY	AESTHETICS	ERGONOMICS	
The available space on the bike where components can be placed with minimal brackets and frame modification.	The total cost to modify and equip the bike for competition	The amount of time it will take to modify the frame to be used for the competition	The ease in which the bike material can be welded onto	How good the bike looks	How good the bike feels to be on	
	Takes into account the cost of new parts		Takes into account the material of the frame			
9	4	5	9	5	4	61.6
7	6	5	6	7	8	63.7
7	6	5	8	7	7	67.8
1	1.2	1.8	0.6	0.1	0.5	10

Fluid Power Circuit Design

CXAA - Check Valve DLDM - 2W2P Valve NCBB - Check/Choke Valve NFBC - Needle Valve RDBA - Pressure Relief Valve

Fluid Power

Figure 5 Annotated Hydraulic Circuit

Design Formulas

Grade to Degrees $-tan^{-1}(\frac{Grade}{100}) = Degrees$

Pull of Bike (lbs) $-sin(Degrees) * (Weight) * (Rolling Resistance) = Pull_1$

Pull from Weight (lbs) -cos(Degrees) * (Weight) * (Rolling Resistance) = Pull₂

> Total Uphill Pull (lbs) $Pull_1 + Pull_2 = Uphill Pull$

Torque Required (lb. in.) $(Uphill Pull) * (r) = \tau$

 $\frac{\tau * (2\pi)}{PSI} = CIR_m$

$$\frac{\text{Wheel Speed (rev/min)}}{d} = RPM$$

Gallons per Minute of Flow (gal/min)

$$\frac{(CIR_m * RPM)}{231} = GPM$$

 $\frac{\text{Motor Needed (HPa)}}{(GPM * PSI)} = HP_a$

 $\frac{(\tau * RPM)}{63025} = HP_1$

 $\frac{HP_1}{Pump \ Efficiency}}{Motor \ Efficiency} = HP_c$

 $\frac{Pump CIR (in^3/rev)}{GPM * 231} = CIR_p$

 $\frac{Pump CIR with Efficiency (in³/rev)}{CIR_{p}} = HP_{c}$

			Tabl	e 2 Motor Syste	em Displaceme	nt			
				Pump speed, eff	iciency included, f	lowrate, US	Pump speed, effi	iciency included, f	lowrate, METRIC
Pressure		displacem	ent	98%	% <u>96%</u> <u>95%</u> <u>98%</u>		96%	6% 95%	
Pressure MPa	pressure PSI	CIR	CC/rev	GPM at 600rpm	GPM at 300RPM	GPM at 200RPM	LPM at 600RPM	LPM at 300RPM	LPM at 200RPM
3.4474	500	1.026	16.813	2.7194	1.3880	0.9351	10.3064	5.2605	3.5439
4.1369	600	0.855	14.011	2.2661	1.1567	0.7792	8.5886	4.3838	2.9533
4.8263	700	0.733	12.010	1.9424	0.9914	0.6679	7.3617	3.7575	2.5314
5.5158	800	0.641	10.508	1.6996	0.8675	0.5844	6.4415	3.2878	2.2150
6.2053	900	0.570	9.341	1.5108	0.7711	0.5195	5.7258	2.9225	1.9689
6.8948	1000	0.513	8.407	1.3597	0.6940	0.4675	5.1532	2.6303	1.7720
7.5842	1100	0.466	7.642	1.2361	0.6309	0.4250	4.6847	2.3912	1.6109
8.2737	1200	0.428	7.006	1.1331	0.5783	0.3896	4.2943	2.1919	1.4766
8.9632	1300	0.395	6.467	1.0459	0.5338	0.3596	3.9640	2.0233	1.3631
9.6527	1400	0.366	6.005	0.9712	0.4957	0.3340	3.6808	1.8788	1.2657
10.3421	1500	0.342	5.604	0.9065	0.4627	0.3117	3.4355	1.7535	1.1813
11.0316	1600	0.321	5.254	0.8498	0.4338	0.2922	3.2207	1.6439	1.1075
11.7211	1700	0.302	4.945	0.7998	0.4082	0.2750	3.0313	1.5472	1.0423
12.4106	1800	0.285	4.670	0.7554	0.3856	0.2597	2.8629	1.4613	0.9844
13.1000	1900	0.270	4.425	0.7156	0.3653	0.2461	2.7122	1.3844	0.9326
13.7895	2000	0.257	4.203	0.6798	0.3470	0.2338	2.5766	1.3151	0.8860
14.4790	2100	0.244	4.003	0.6475	0.3305	0.2226	2.4539	1.2525	0.8438
15.1685	2200	0.233	3.821	0.6180	0.3155	0.2125	2.3424	1.1956	0.8054
15.8579	2300	0.223	3.655	0.5912	0.3017	0.2033	2.2405	1.1436	0.7704
16.5474	2400	0.214	3.503	0.5665	0.2892	0.1948	2.1472	1.0959	0.7383
17.2369	2500	0.205	3.363	0.5439	0.2776	0.1870	2.0613	1.0521	0.7088
17.9264	2600	0.197	3.233	0.5230	0.2669	0.1798	1.9820	1.0116	0.6815
18.6159	2700	0.190	3.114	0.5036	0.2570	0.1732	1.9086	0.9742	0.6563
19.3053	2800	0.183	3.002	0.4856	0.2479	0.1670	1.8404	0.9394	0.6328
19.9948	2900	0.177	2.899	0.4689	0.2393	0.1612	1.7770	0.9070	0.6110
20.6843	3000	0.171	2.802	0.4532	0.2313	0.1558	1.7177	0.8768	0.5907

Selection of Hardware

- Zwei Inc.
 - Displacement 7 cc/rev
- Parker Hannifin 1L Gas Piston Accumulator
 - 4000 psi Capacity
- 2 Port 2 Way Rotary Valve
- Aluminum Reservoir
 - Weight Reduction
 - 1.66lb vs. 4.92lb
 - Heat Dissipation

Figure 6 Parker Hannifin Accumulators

Manifold Circuit

CXAA - Check Valve DLDM - 2W2P Valve NCBB - Check/Choke Valve NFBC - Needle Valve RDBA - Pressure Relief Valve

Figure 8 Hydraulic Circuit Sent to Sun Hydraulics

Manifold

Figure 9 Manifold CAD with Annotations

Figure 10 Manifold

Figure 11 Manifold Motor, Pump, and Accumulator Ports

Simulink Circuit Model

Simulink (Cont.)

눰 Block Parameters: Hydraulic Mote	or1	×	Simscape Results Explorer: Working_Flov	w_Simulator	- D
Hydraulic Motor			File Edit View Insert Tools Deskt	top Window Help	annuas sub
This block represents a positive, f key parameters required to parar nominal pressure, and angular ve Connections A and B are hydraulic Connection S is a mechanical rota direction is from port A to port B. shaft in positive direction, and pos shaft.	ixed-displacement hydraulic motor of any type as a dat neterize the block are the motor displacement, volumet locity. The model represents a non-reversible motor an c conserving ports associated with the motor inlet and c stional conserving port associated with the motor shaft. This means that the flow rate flowing through the motor sitive pressure differential $p = p_A - p_B$ creates positive	a sheet-based model. The ric and total efficiencies, id cannot simulate pumps. butlet, respectively. The block positive or from A to B rotates the re torque at the motor	Image: Second	0.4 0.4 0.2 0.1 0.5 0.2 0.1 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	
Settings			B-W Hydraulic_Fluid1	0 50 100 150 200 250 3 Time (s)	00 350 400 450 500
Parameters			⊕- W Hydraulic_Motor1 ⊕- W Hydraulic_Reference1	300 pressure_diff	; • • • • • • • • • • • • • • • • • • •
Motor displacement: Volumetric efficiency:	5e-6	m^3/rad ~	B - ₩ Ideal_Angular_Velocity_Source1 B - ₩ Mechanical_Rotational_Reference2 B - ₩ Mechanical_Rotational_Reference4 B - ₩ PS_Constant1 R - ₩ Incharged Accumulator1	200 SE 100	
Total efficiency:	0.92			0 50 100 150 200 250 3	200 350 400 450 500
Nominal pressure:	100e5	Pa ~		Time (s) trq_shaft	
Nominal angular velocity:	188	rad/s v		6	
Nominal kinematic viscosity:	18	cSt ~		¥ 4	
Nominal fluid density:	900	kg/m^3 ~	Statistics for selected node: id: Hydraulic_Motor1		
	OK Cancel	Help Apply	Number of time steps: 281 Number of logged variables: 6 Number of logged zero crossing signals: 0 Source: <u>Hydraulic Motor1</u>	0 50 100 150 200 250 3 Time(s)	00 350 400 450 500
					16

Figure 13 Block Parameters

Figure 14 System Response

Finite Element Analysis

Figure 15 Sprocket

Fluid Power

Figure 16 Accumulator Mount

FEA on Motor

Figure 19 Motor Mount Revision and Final Implementation

Virtual Prototype

Figure 20 Side View

Manufacturing

• Materials

- A36
- o **1018**
- 1020 1026
- o **6061**

• Processes

- CNC
- Milling
- Welding
- Turning

Figure 22 Frame and Components

Figure 23 Pump Test Fit

Data Acquisition

Figure 24 Arduino

- Reed Switch
- Arduino Uno
- SD Card Shield
- Sampling at 1 KHz
- Verified Velocity Data

Figure 25 Sample Test Results

Lessons Learned

- Tolerances
 - Leave room for tubing and fittings
- Replacement parts
 - Make sure parts are easily acquired
- Hydraulic nuances, not just high level stuff

 Learn Rules of Thumb early
- Time Management
 - Leave time for mistakes and problems

Questions?

