

NFPA Education and Technology Foundation FINAL PRESENTATION Purdue University Andrea Vacca 4/13/2018

PRESENTATION OVERVIEW

- The Team
- Bicycle Design
 - Hydraulic design
 - AMESim simulation and optimization
 - Experimental and simulation results

Mechanical design

- Static analysis
- Final design
- Electronic design
 - Application design and functionalities
- Conclusion
 - Experimental results
 - Cost analysis
 - Lesson learned

The team

Francesco Leschiera (Italy)

Marcos Ivan Mireles (Mexico)

Jiongyu Sun (China)

Jeffrey Kuhn (U.S.A.)

Team advisor

Andrea Vacca

Team Advisor

Professor of Mechanical Engineering and Agricultural & Biological Engineering Maha Fluid Power Research Center Purdue University

Presentation highlight

Gerotor pump

External gear pump

Which is the best hydraulic unit for use in a human powered vehicle?

Internal gear pump

Piston pump

Hydraulic design

Goal : Find the most efficient hydraulic units for the design

- Hydraulic units comparison
 Hydraulic layout
 - Operating modes
 - AMESim circuit
 - Optimization process
 - Results

Hydraulic unit comparison

Bent axis piston pump

External gear pump

Fluid Power

Hydraulic circuit layout

Operating modes : Pedaling

- → Flow direction
- High pressure line
- Low pressure line

Operating modes : Charging

Low pressure line

Operating modes : Boost

Operating modes : Regeneration

Low pressure line

Т

Pedaling mode: Sizing

Goal : Max velocity

4 design variables + 5 assumption value → Velocity

The resistance force would apply a torque on the shaft $T_m = Frg_m$

Assuming a line pressure is **p**, the motor displacement is, T

$$\boldsymbol{V}_{\boldsymbol{m}} = \frac{\boldsymbol{r}_{\boldsymbol{m}}}{\boldsymbol{p} \cdot \boldsymbol{\eta}_{hm,m}}$$

and the pump displacement is,

$$\boldsymbol{V_p} = \frac{\boldsymbol{T_p} \cdot \boldsymbol{\eta_{hm,p}}}{p}$$

With a shaft rotational speed of n, the flow rate Q is,

$$\boldsymbol{Q} = \boldsymbol{\eta}_{\boldsymbol{v},\boldsymbol{p}} \cdot \boldsymbol{n} \cdot \boldsymbol{V}_{\boldsymbol{p}} \cdot \boldsymbol{g}_{\boldsymbol{p}}$$

The linear velocity of the vehicle would be,

$$v = \frac{\eta_{v,m} \cdot Q}{V_m} \cdot 2\pi r \cdot g_m$$

Data	Name	Data
θ	Slope	1% grade
r	Wheel Radius	0.324 m
f	Rolling Resistance	0.006
n	Rotational Speed	70 rpm

Assumption	Name	Value
$\eta_{hm,m}$	Motor Hydro-mechanic Efficiency	0.9
$\eta_{v,p}$	Pump Volumetric Efficiency	0.9
$\eta_{hm,p}$	Pump Hydro-mechanic Efficiency	0.9
$\eta_{v,m}$	Motor Volumetric Efficiency	0.9
Р	Pressure	50 bar

Design Variable	Name
V _m	Motor Displacement
g _p	Gear Ratio (Pump)
v_p	Pump Displacement
g _m	Gear Ratio (Motor)

Optimization circuit

т

Hydraulic units combinations

Optimization flow process

Optimization flow process

Optimization flow process

Regeneration system

Both valve closed

Chosen components

Best Design*	Value
Pump Displacement (F-11)	5.6 cc/rev
Motor Displacement (F-11)	4.9 cc/rev
Front Gear Ratio	6.48
Rear Gear Ratio	-2.07

Selected components	Value
Piston pump F-11	4.9 cc/rev
Piston motor F-11	4.9 cc/rev
Front Gear Ratio (MISUMI)	120/19
Rear Gear Ratio (MISUMI)	100/17
Regeneration gear ratio(ANDYMARK)	2.8

Other components	Value
Accumulator	2.0 L
EATON LZJ	6.6 cc/rev
Eaton NO valve	-
Sunhydraulics NC valve	-
Parker relief valve	200 bar

Mechanical design

Goal : Streamline and appealing design

- Mechanical units comparison
 - Hydraulic components
 - Mechanical components
 - Static analysis
 - Final design

Hydraulic components

Pump / Motor Specifications		
Material	Cast iron	
Displacements	4.9 cc/rev	
Weight	11 lbs	
Provider	Parker	

Pump

CAD Motor

Motor

Hydraulic components

Hand pump Specifications		
Material	Steel	
Displacements	4.9 cc/stroke	
Weight	1.75 lbs	
Provider	Hydac	

Regeneration pump Specifications

Material	Aluminum
Displacements	6.6 cc/rev
Weight	3 lbs
Provider	Eaton

Hand pump

Mechanical components

Pump Gear Box Technical Specifications	
Material	Stainless Steel
# of stages	2
Primary Gear Ratio	120/19
Secondary Gear Ratio	120/120
Provider	Misumi

Regeneration Gear Box Specifications		
Gear Material	Steel	
# of stages	1	
Total Gear Ratio	2.8/1	

Motor Gear Box Technical Specifications		
Material	Stainless Steel	
Number of Stages	1	
Gear Ratio	100/17	

Static analisys

Component	Weight (Kg)
Parker F-11(x2)	10
Eaton LZJ	3
Hand pump	2
Accumulator	2
Rider	90
Oil	3.5
Frame	15
Other components	3
Total	128.5

Final design

Electrical design

Goal : Design an interactive modern

Market available app Electronic circuit Functionalities Extra features

Monitoring

Localization

Instruction

App features

Monitoring

Control

Shimano control

Valve control

App features

Extra features

GPS positioning

Instruction

Experimental results

Velocity

Cost analysis

Cost analysis

Some lessons learned

- Budgeting management
- Time management
- Organization skills
- Theoretical knowledge learning
- Programming knowledge learning
- Team cooperation
- Problem Solving

Conclusion

We all agreed that this project was able to expand our practical/theoretical knowledge as engineers. It also challenged our problem solving abilities while incorporating elements of hydraulic controls, mechanical manufacturing, and electronic circuit analysis.

Thank You! Questions?