

NFPA Education and Technology Foundation **FINAL PRESENTATION**

West Virginia University Institute of Technology

Dr. Panta 04/12/2018

Presentation Outline

- Introduction: WVU Tech Team
- Project Statement & Objectives
- Project Review
 - Midway Project
 - Final Project
- Fluid Power Vehicle
 - Design & Construction
 - Testing & Evaluation
- Cost Analysis
- Experiences/Lessons Learned
- Conclusion
- Acknowledgements
- References
- Sample Calculations

Introduction: The WVU Tech Team

Left to right: Geoffroy Gauneau, Amr Semmami, Dr. Yogendra Panta (advisor), Matthew Pittman, Manuel Serrano Laguna

Project Statement & Objectives (1/2)

- Learn hydraulic theories and fluid components
- Design, Assemble, Test, Analyze, Redesign, and Finalize a well-functioning *human-powered hydraulic vehicle that meets*
 - NFPA Fluid Power Vehicle Challenge and fulfills our Capstone Design Project requirements.

Project Statement & Objectives (2/2)

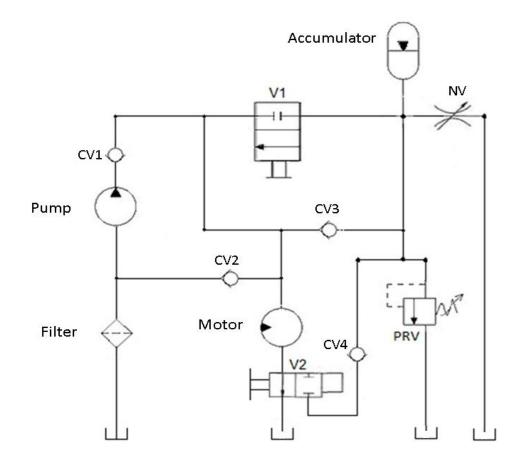
• Safety is our Number 1 Priority

• Understand, build, assemble components, test, and finalize a *Simple Hydraulic Circuit*

Lightweight yet meets Dynamic
 Equilibrium while the vehicle in motion

Project Review- Midway

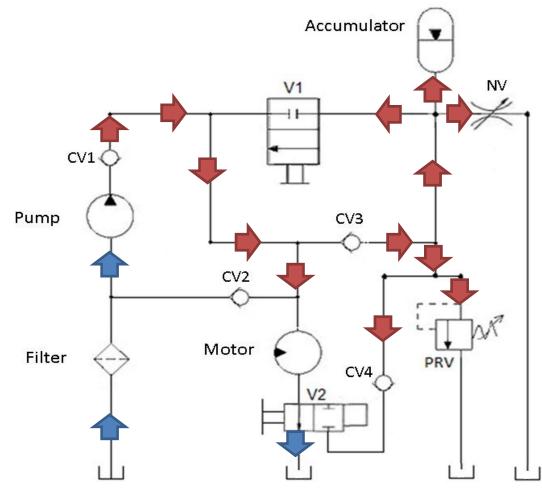
Presented the progress


Made schematic improvement (circuit drawing contained some errors)

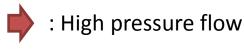
 More analysis was suggested to be conducted

Project Review- Final (1/5)

 Hydraulic circuit redesigned based on midway review

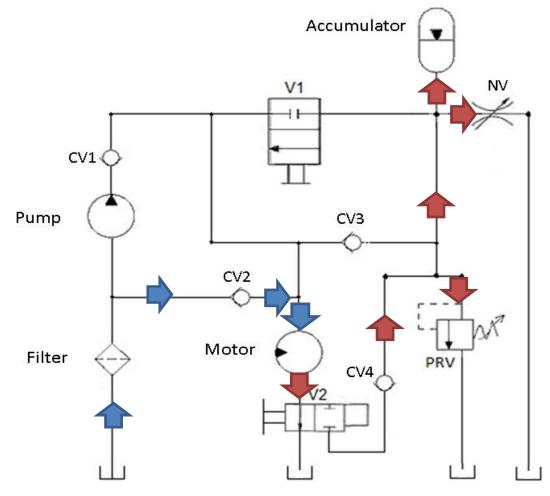


CV: Check Valve NV: Needle Valve PRV: Pressure Relief Valve V: Directional Control Valve

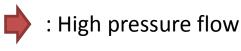

Project Review- Final (2/5)

• Hydraulic circuit – Pedaling mode

CV: Check Valve NV: Needle Valve PRV: Pressure Relief Valve V: Directional Control Valve

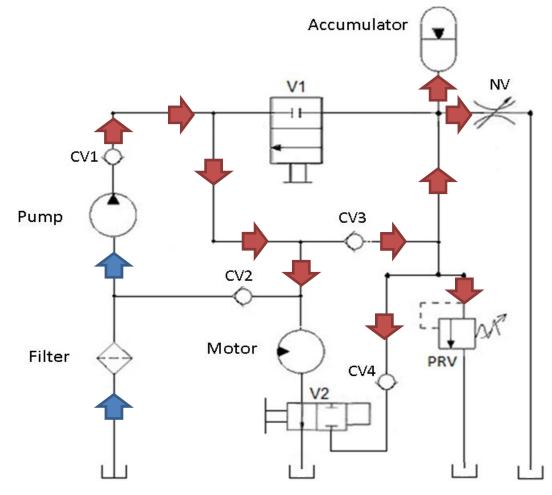


: Low pressure flow


Project Review- Final (3/5)

• Hydraulic circuit – Regenerative mode

CV: Check Valve NV: Needle Valve PRV: Pressure Relief Valve V: Directional Control Valve

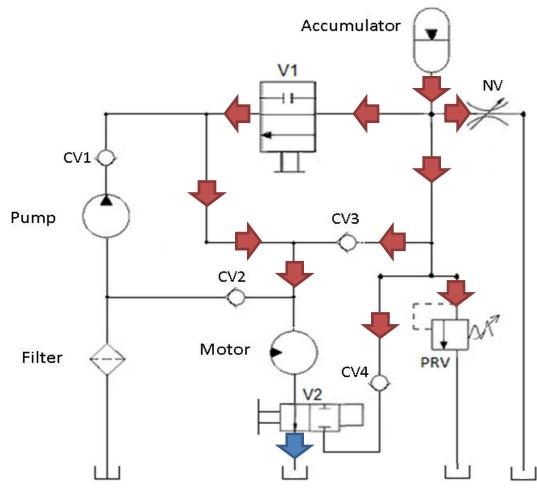


• : Low pressure flow

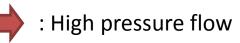
Project Review- Final (4/5)

• Hydraulic circuit – Charging mode

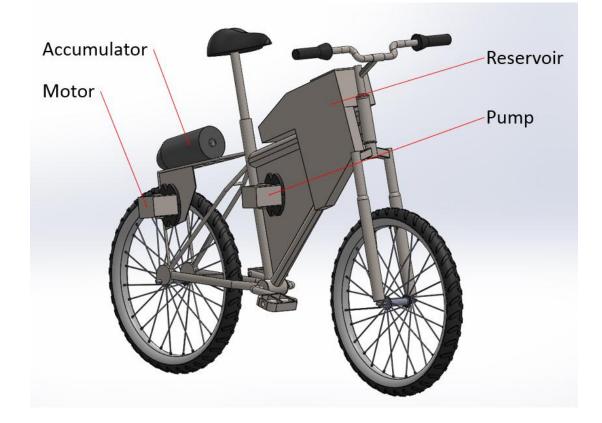
CV: Check Valve NV: Needle Valve PRV: Pressure Relief Valve V: Directional Control Valve



: Low pressure flow


Project Review- Final (5/5)

• Hydraulic circuit – Boost mode


CV: Check Valve NV: Needle Valve PRV: Pressure Relief Valve V: Directional Control Valve

• : Low pressure flow

CAD model with major components shown

Fluid Power Vehicle Design & Construction

Gear Pump

1.22 cu in Hydreco HMP3 20211A1 Hydraulic Pump

Accumulator

A1QT31003 Accumulator 1 quart Weight- 9.5 lb

Motor

1.21 cu in Dynamic BMM20UBU Hydraulic Motor

Fluid Power Vehicle Design & Construction

Frame

Sprockets

Reservoir

Fluid Power Vehicle: Testing & Evaluation (1/2)

• First attempt to ride the vehicle failed

Original Calculations				
Motor RPM	687.27			
Rear Wheel RPM	229.09			
Gear Ratio Pump	10			
Gear Ratio Motor	3			
Motor Efficiency	0.90			
Pump Efficiency	0.95			
Volumetric Efficiency	0.95			
Pull (lb)	23.18			
Torque (lb-ft)	25.11			
Wheel RPM	193.85			
Motor Size (cu in/rev)	0.55			
Flow Rate (gpm)	2.12			
Power (HP)	2.78			
Pump Size (cu in/rev)	0.6			

Updated Calculations					
Bike Weight (lb)	120.00				
Up Hill Pull (lb)	13.23				
Torque (lb·ft) @ wheel	14.33				
Torque of motor (lb*ft)	16.94				
Wheel RPM	180.92				
Motor Displacement (In ³ /rev)	1.21				
Motor RPM	190.97				
GR 1 (Crank to Pump)	3.43				
GR 2 (Motor to Wheel)	0.95				
Total Ratios (crank to wheel)	3.22				
Flow Rate Motor GPM	1.00				
Pump Displacement (CIR)	1.20				
Pump Horse power	0.58				
Hydraulic ratio (pump/motor)	0.99				
Accumulator pre-charge (psi)	800.00				

Fluid Power Vehicle: Testing & Evaluation (2/2)

 Updated design allowed the vehicle to fully function

Cost Analysis

Item	Vendor	Quantity	Cost per unit	Total cost	Comment
Gear pump	Sunsource	1	\$0.00	\$0.00	Donated by competition sponsor
Female hose end - str	Sunsource	30	\$0.00	\$0.00	Donated by competition sponsor
Female hose end - 45'	Sunsource	15	\$0.00	\$0.00	Donated by competition sponsor
Female hose end - 90'	Sunsource	15	\$0.00	\$0.00	Donated by competition sponsor
Tee adapter 1 F to 2 M	Sunsource	6	\$0.00	\$0.00	Donated by competition sponsor
Accumulator	Sunsource	1	\$0.00	\$0.00	Donated by competition sponsor
Check valve	Sunsource	3	\$0.00	\$0.00	Donated by competition sponsor
Pressure relief valve	Sunsource	1	\$0.00	\$0.00	Donated by competition sponsor
0.61 CI Variable Piston Pump	Burden	1	\$116.19	\$116.19	N/A
0.5 Cl Gerotor Motor	Burden	1	\$147.95	\$147.95	N/A
1/2" 2500 PSI Hydraulic Hose	Burden	2	\$6.95	\$13.90	N/A
3/8" 400 PSI Hydraulic Hose	Burden	5	\$3.99	\$19.95	N/A
5/8 Splines	Grainger	1	\$39.89	\$39.89	N/A
Rigid Steel Coupling	Grainger	1	\$7.72	\$7.72	N/A
Sprocket Parts	Control Point	1	\$150.00	\$150.00	N/A
3' x 3' Sheet Steel	WV Steel Corporation	1	\$57.60	\$57.60	N/A
Steel Angle Bar	Steel Corporation	1	\$8.32	\$8.32	N/A
Sprockets	Elevation Sports	1	\$59.99	\$59.99	N/A
Straight Adapter	Nova Rubber Co.	18	\$0.96	\$17.28	N/A
90 Elbow Adapter	Nova Rubber Co.	12	\$1.00	\$12.00	N/A
Tee Adapter	Nova Rubber Co.	11	\$2.05	\$22.55	N/A
3000 psi Check Valve	Nova Rubber Co.	2	\$80.00	\$160.00	N/A
10,000 psi Needle Valve	Nova Rubber Co.	1	\$80.00	\$80.00	N/A
Hydraulic Hose Assemblies	Nova Rubber Co.	1	\$261.95	\$261.95	N/A
Aluminum 7 Port Manifold	Enerpac	1	\$206.23	\$206.23	N/A
3/8 Prince Needle Valve	Burden	1	\$26.95	\$26.95	N/A
3/8 5 PSI Check Valve	Burden	2	\$15.95	\$31.90	N/A
Filter Mount Kit	Automotive	1	\$25.98	\$25.98	N/A
Pressure Relief Valve	Burden	1	\$55.93	\$55.93	N/A
Hydraulic Adapters MJIC #8	Nova Rubber Co.	32	\$5.80	\$185.60	N/A
1.22 CI Gear Pump	Burden	1	\$112.99	\$112.99	N/A
1.21 CI Dynamic Motor	Burden	1	\$152.95	\$152.95	N/A
Miscelaneous Items and Labor		1	\$600.00	\$600.00	N/A
			Total Cost	\$2,573.82	

Experiences/Lessons Learned

- Knowledge of hydraulics
- Account for margin of error during planning
 - Ordering parts ahead of time
 - Building and testing the vehicle
- Do not hesitate to ask for help when needed
 - Advisor(s) & other instructor(s)
 - NFPA

Conclusion

 Grateful to have participated in this challenge. Designing and building a functional, human powered, hydraulic vehicle was challenging and a valuable learning experience.

 Looking forward to competing in this year's Fluid Power Vehicle Challenge

Acknowledgements

 Many thanks to Kenneth Pittman, Lynn Beyer, Ernie Parker, Eric Lanke and everyone from the National Fluid Power Association

 We appreciate Danfoss, Parker Hannifin, SunSource, Eaton Corporation, LubeTech and all other sponsors for the donations

References

- Vickers mobile hydraulics manual. (1998).
 Rochester Hills, MI: Vickers, Inc.
- Hedges, C. S. (1988). Industrial fluid power: volume 3: advanced text on hydraulics, air & vacuum for industrial and mobile applications. Texas: Womack.

Thank you for your attention

As Elvis Presley says:

"Thank you, thank you very much."

Questions & Answers

