

NFPA Education and Technology Foundation

Final Presentation The Incompressibles Cal Poly - San Luis Obispo Dr. James Widmann April 3, 2019

Team Intro

Nicholas Gholdoian

Alex Knickerbocker

David Vitt

Julian Rodkiewicz

Kyle Franck

Russell Posin

Agenda

- 1. Design Overview
- 2. Frame
- 3. Drivetrains
- 4. Mechatronics
- 5. Manufacturing
- 6. Testing
- 7. Lessons Learned

Design Overview

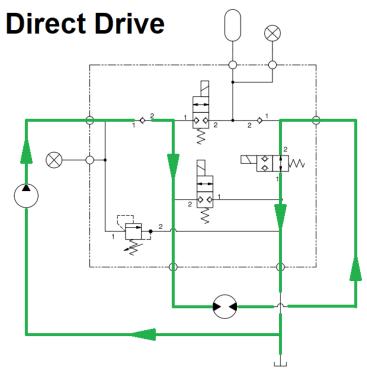
- Custom steel frame
- Sun-source manifold
- Right angle planetary gearbox
- 2-speed front drivetrain
- Welded aluminum reservoir
- 1 gallon composite accumulator
- Custom mechatronics system
- Bosch AF2O-5 pumps

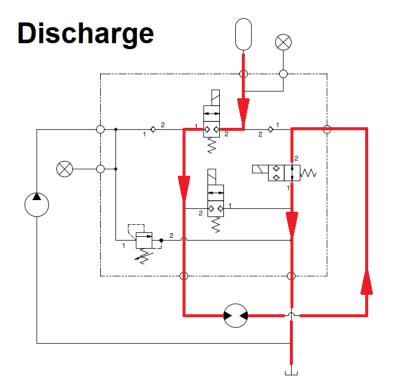
Drivetrain (Front)

- 2 speed front crankset w/ front derailleur
- 10.3:1 & 6.3:1 gear ratios
- Apex Dynamics right-angle planetary
- Bosch AF2O-5 bent axis pump
- Bent sheet metal and welded mount

Drivetrain (Rear)

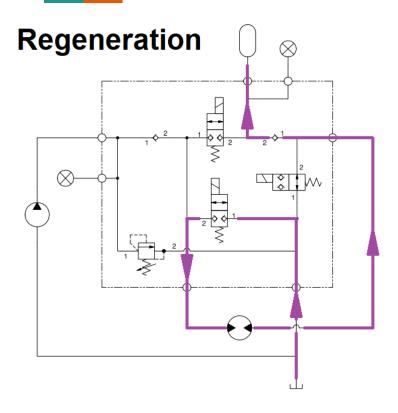
- Steel mount welded to frame
- Chain drive
- 3:1 gear ratio
- Bosch AF2O-5 bent axis pump

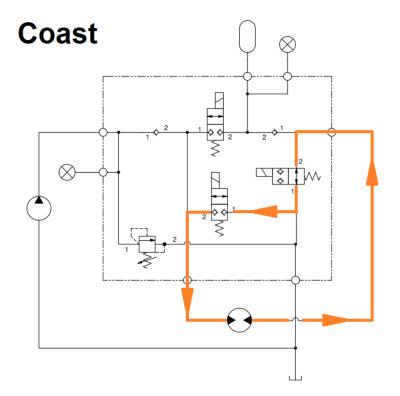



Hydraulic Components

Component	Quantity/Size	
Eaton Two-Way/Two Position Poppet Solenoid	3 (1 Nominally Open)	
Steelhead Composites 1 Gallon Composite Bladder Accumulator	1	
Eaton Direct Acting Relief Valve	1	
Eaton Check Valve	2	
Manual Proportioning Valve	1	
Bosch Rexroth Bent Axis Pump	2	
Fittings & Line Size	-6AN	
SunSource Custom Manifold	1	

Drivemode Circuits





*Dead battery leaves bike in direct drive mode

Drivemode Circuits

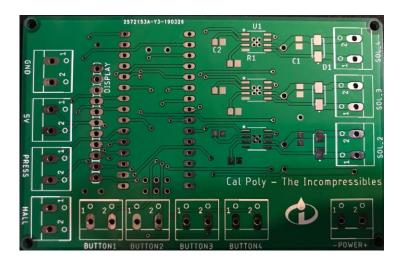
Hydraulic Analysis

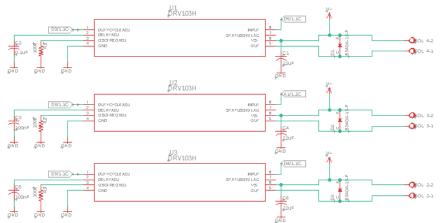
- 4.93 cm^3/rev displacement for pump/motor
- Simscape analysis results
- Direct Drive Mode (17 mph)
 - \circ ~0.9-0.85 gpm for pump/motor flow rate
 - ~690-650 rpm for pump/motor speed
 - ~450-350 psi drop across pump/motor
- Accumulator Discharge (fully open)
 - \circ ~1.5 gpm max for motor flow rate
 - \circ ~1100 rpm max for motor speed
- Circuit Losses @ 31 mph (top speed)
 - Direct Drive ~ 30.2psi (2 solenoids)
 - Regen ~ 23.2psi (1 solenoid, 1 check)
 - Discharge ~ 30.2psi (2 solenoids)
 - Coast ~ 30.2psi (2 solenoids)

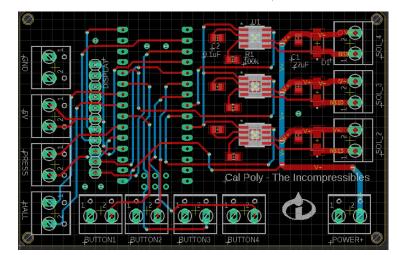
Mechatronics

- Components

Controller:	Solenoid Driver:	Display:	Pressure Sensor	Speed Sensor
Arduino Nano	Ti DRV 103-H	2.8 inch LCD	3000 psi/ 5V	Hall Effect Modules

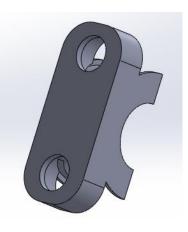


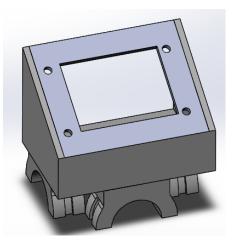


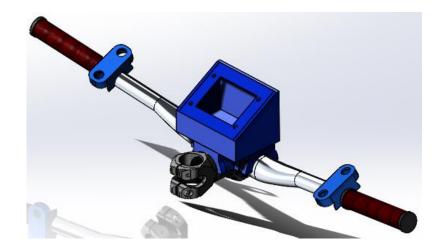

Mechtronics

Custom PCB

- Designed using Eagle
- Arduino Nano MCU
- Peripheral components connected through traces

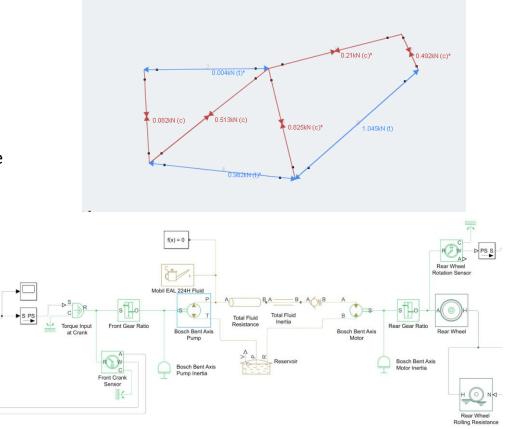

Mechatronics

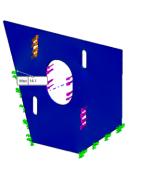

---- Mounting


Button Mount

Display Enclosure

Mounted on Handlebars





Modeling

- Patterson Control Model
- Truss analysis for frame strength
- FEA on pump/motor mounts
- MATLAB Simscape models for bike performance

von Mises (ksi) 73 66.9

60.8

54.8

48.7

42.6

36.5

30.4

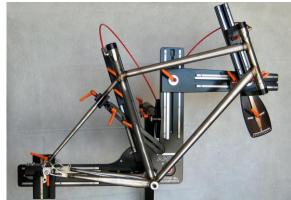
24.3

18.3

12.2 6.08

Vehicle Construction

- Mitered frame tubes with Anvil fixtures
- Bent tubes by hand
- Fixtured tubes on final Anvil frame for welding



Vehicle Construction

- Welded frame and mounts together
- Painted then post machined
- BB, crankset, headset installation
- Welded reservoir
- Installed lines and bled system

Vehicle Testing

Competition Testing

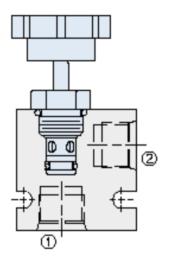
- Local flat parking lot
- Replicate competition challenges
- Endurance Testing
 - \circ ~4:15 mile time
 - Goal: <4 min
- Sprint Testing
 - $\circ \quad 21.5 \, \text{sec} 22.4 \, \text{sec}$
 - Goal: <18 sec
- Efficiency Testing
 - $\circ \quad \text{Score of 52-55 points} \\$
 - Goal: >25 points
- Accu. Recharge
 - \circ ~3.5 min
 - Goal: <5 min



Vehicle Testing

Front Shifting Problem

- Chain slipped on smallest front chainring
- Not enough chain wrap on planetary sprocket
- Swapped single jockey for dual jockey wheel tensioner
- Needed more chain tension



Vehicle Testing

Accu. Discharge Problem

- Pressure spike during accu. discharge blew through seals in motor
- Added proportioning valve to reduce pressure spike

Lessons Learned

- Have a dedicated welder on your team for fabrication
- Redesign placement of front drivetrain for more chain wrap and better chain tensioning
- Investigate pump cavitation while pedaling aggressively and in regen mode
- Factor in large amount of time manufacturing requires
- Check torque on fittings

Thank you!

Any Questions?