

FINAL PRESENTATION
University of Cincinnati
Muthar Al-ubaidi
4/11/19

Informational Only Delete for Final Presentation

- Refer to the FPVC assessment rubric for specifics.
- All team members are expected to contribute during the presentation.
- The Final Presentation is expected to be of high quality, well-rehearsed, touching on the high level aspects of the project. Avoid getting too far "into the weeds".
- Length: Strictly adhere to a 15 minute presentation. Judges will allow for 5 minutes of Q&A but no more than 20 minutes will be allotted for the presentation.

FINAL PRESENTATION	Poor	Moderate	Good	Very Good	Excellent
Summary of midway presentation is succinct and well organized.	1	2	3	4	5
Vehicle construction was completed on-time and performed mostly by the team members.	1	2	3	4	5
Vehicle testing was performed and improvements were made based on results.	1	2	3	4	5
Final vehicle brought to competition appears reliable, safe and of quality craftsmanship.	1	2	3	4	5
Lessons learned are clearly stated and appropriate to the design/build experience described.	1	2	3	4	5
Presentation is completed on time and demonstrates good team synergy.	1	2	3	4	5

Photo of Vehicle

Team Introductions


Team Introductions (include photo)

Muthar Al-Ubaidi, PhD Team Advisor

Mick Morris -Team lead

Alison Moore

Jordan Holmes

Taylor Gelhausen

Agenda

- 1. Summary of Midway Presentation
- 2. Vehicle Construction
- 3. Vehicle Testing
- 4. Final Vehicle Brought to Competition
- 5. Conclusion & Lessons Learned

Agenda information

- Summary of Midway presentation
 - Note: Do not spend too much time on this section
 - Design objectives
 - Vehicle design
 - Fluid power circuit design
 - Selection of hardware
 - Results and incorporation of analyses (e.g., finite element analysis)
- Vehicle construction
 - completed on-time and performed mostly by the team members
 - *list through major designed components
- Vehicle testing
 - Was performed and improvements were made based on results
- Final vehicle brought to the competition
 - Appears reliable, safe and of quality craftsmanship
- Lessons learned
 - Are clearly stated and appropriate to the design/build experience described
- Presentation
 - Completed on time and demonstrates good team synergy

*A YouTube link of the any video(s) must be included in the speaker notes.

Problem Statement & Objectives

<u>Design</u>

- Efficient hydraulic circuit
- Unique design

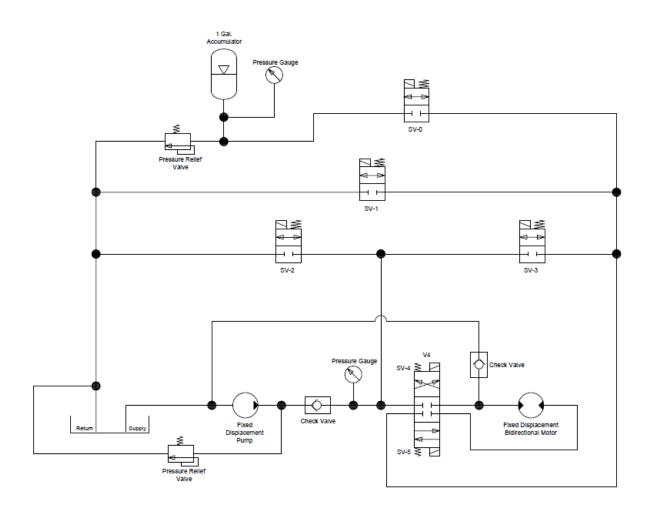
<u>Overall</u>

- master new concepts
- practice applications

Timeline

Hydraulic Bike 2019 -	Spring Semester Timeline			2019																			
-				JANUARY			FEBRUARY			MARCH				APRIL				MAY					
			1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	5	1	2	3	4
Task	Owner	Complete by	1/7	1/14	1/21	1/28	2/4	2/11	2/18	2/25	3/4	3/11	3/18	3/25	4/1	4/8	4/15	4/22	4/29	5/6	5/13	5/20	5/27
Phase 3: Build & Test																							
Rear frame modification	Alison Moore	*																					
Rear frame analysis	Taylor Gelahusen	*		•	SS c	lasses	star	t															
PLC Programming	Gabriele Tisch	*																					
Hose length + crimping	Mick Morris	*																					
Hydraulic circuit assembly	Brandon Potter	*																					
Full assembly	Team	*																					
Phase 4: Verification Review	1																						
Testing + troubleshooting	Jordan Holmes	4/1/201	9										Spri	ng Bre	eak								
Begin final presentation outline	Jordan Holmes	*																					
Send in Proof of Concept	Team	3/26/201	9																				
		*																					
Phase 5: Final Competiton																							
Final Report compliation	Team	*															1	Tecl	1 Ехро				
Final Presentation	Team	*															Com	petit	ion				
		₩																					

Hydraulic Circuit Design


V0 - 2 Pos 2 Way

V1 - 2 Pos 2 Way

V2 - 2 Pos 2 Way

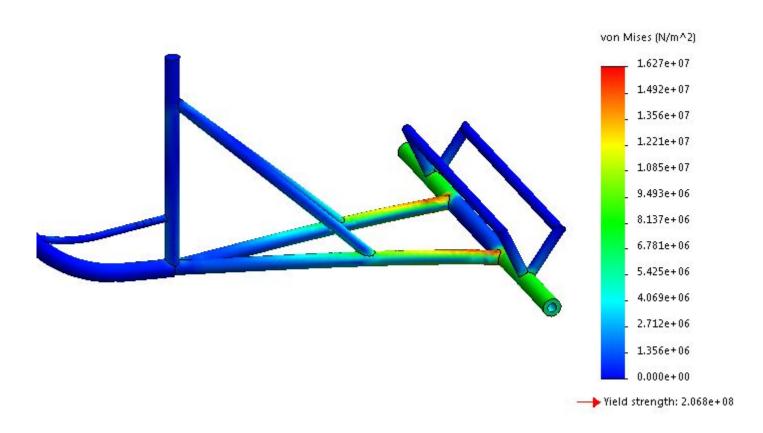
V3 - 2 Pos 2 Way

V4 - 3 Pos 4 Way

PLC Selection Option 1

IDEC FC6A-C40R1DE

Pros

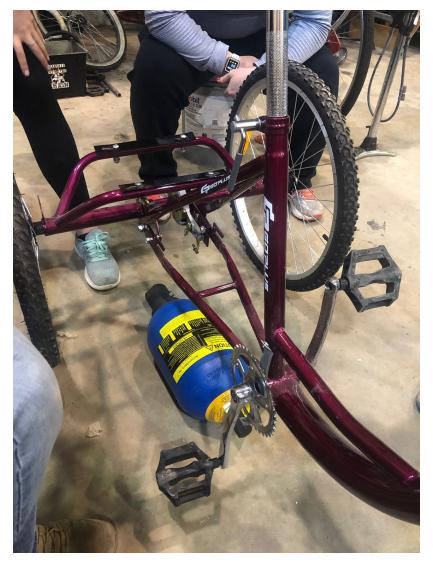

- Easy to program
- Rider could control solenoids using buttons or switches mounted near the handlebars
 - Buttons would need some sort of user feedback, possibly use LED illuminated pushbuttons

Cons

- Expensive
- Bulky
- Must be covered

Frame Analysis

Model



Vehicle Construction

Vehicle Testing

PLC

- setup using a small battery and one solenoid
- based on valve locations, laid out the correct wire lengths
- all controls in one central location

Gear Testing

Gear Testing Continued

Riding Bike in Lot

Final Vehicle

Lessons Learned

- Calculations: Starting torque needed to get moving was somewhat overlooked in the beginning when choosing what gear ratio to use.
- Design: Create multiple concepts, discuss best options
- Communication: more is better than less