

NFPA Education and Technology Foundation Final Presentation University of Denver Kevin Lingenfelter March 12, 2018

DANIEL FELIX RITCHIE SCHOOL OF ENGINEERING & COMPUTER SCIENCE

Agenda

- Team Introductions
- Problem Statement & Objectives
- Current Design
- Summary of Midway Review
 - Design objectives
 - Vehicle design
 - Fluid power circuit design
 - Selection of hardware
 - Results and incorporation of analyses (e.g., finite element analysis)
- Vehicle Testing

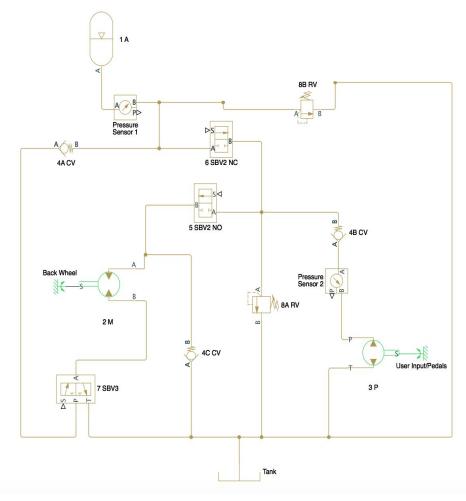
Team Introductions

Matt Imrich Lead CAD Engineer

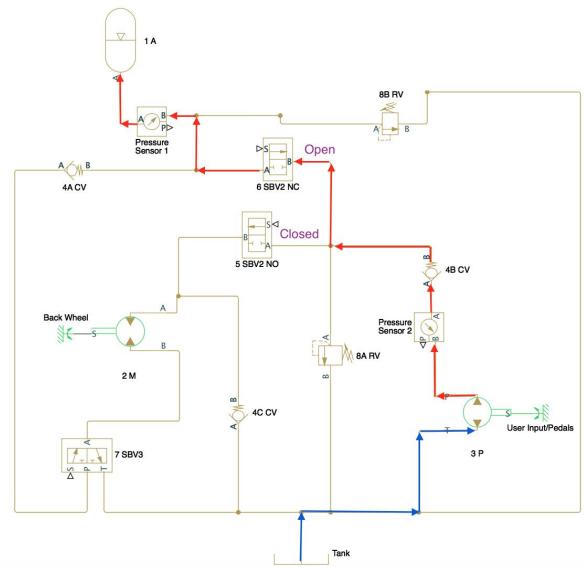
Jason McLean Lead Test Engineer **Ryan Ortiz** Financial Manager Head of Research **Kyle Sun** Co-Project Manager Lead Technical Writer Emma Willis Co-Project Manager Lead Systems Engineer

Problem Statement and Objectives

- **Problem Statement:** This project requires the design and construction of a single-rider vehicle that uses a fluid power system involving energy storage and regeneration technology
- The objectives of this project include:
 - Design
 - Analysis
 - Fabrication
 - Competition
- The requirements for the project are based on the NFPA FPVC rules and regulations.


Final Vehicle

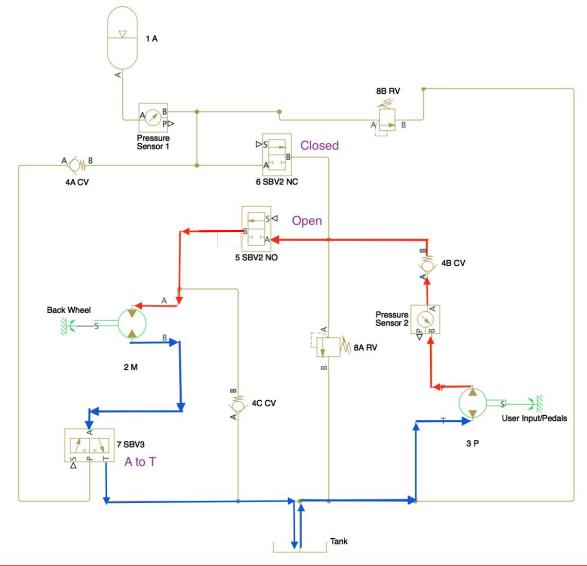
Fluid Power Circuit Design



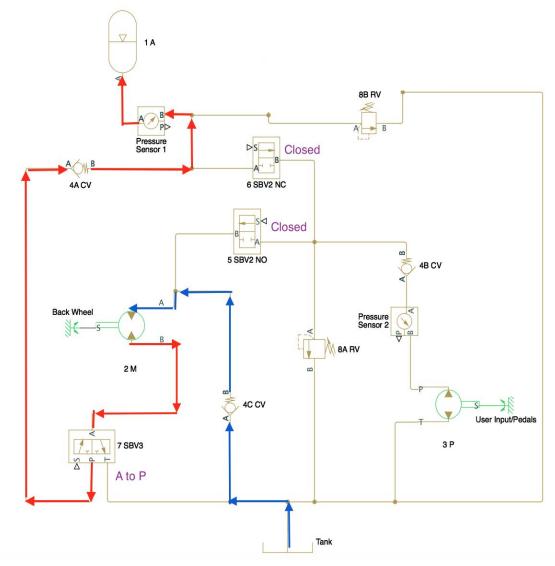
	Bill of Materials			
Item No.	Item No. Description			
1	1 quart accumulator	1		
2	0.54 CID Motor	1		
3	0.5 CID Pump 1			
4	Check Valve 3			
5	2 way solenoid valve (normally open) 1			
6	2 way solenoid valve (normally closed) 1			
7	3 way solenoid valve 1			
8	Pressure Relief Valve	2		

Key	/
High Pressure Line	
Low Pressure Line	

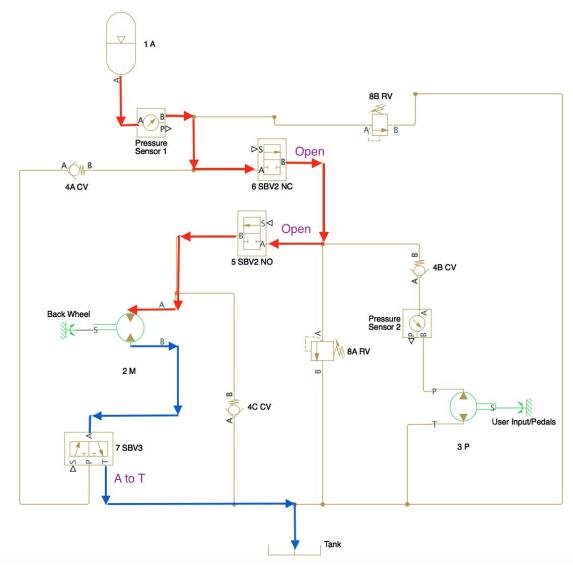
Precharge Circuit



Кеу	
High Pressure Line	
Low Pressure Line	

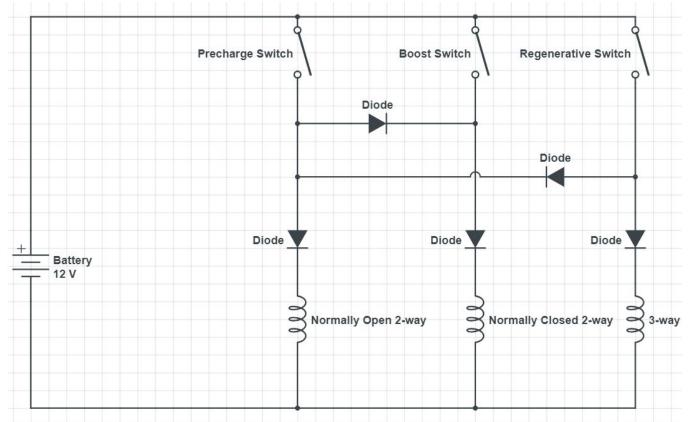

Driving Circuit

Key	/
High Pressure Line	
Low Pressure Line	


Regeneration Circuit

Кеу	
High Pressure Line	
Low Pressure Line	

Boost Circuit



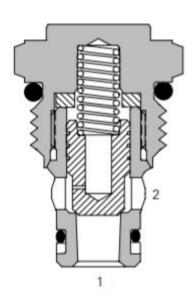
Кеу	
High Pressure Line	
Low Pressure Line	

Electronic Circuit

Mode	V5	V6	V7
Precharge	1	1	-
Boost	0	1	0
Drive	0	0	0
Regenerative	1	0	1

Accumulator:

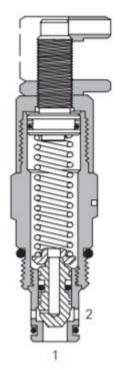
- Accumulators, Inc. A1QT3100-3
- 1 Quart
- Bladder
- Rated for 3000 psi


<u>Pump</u>

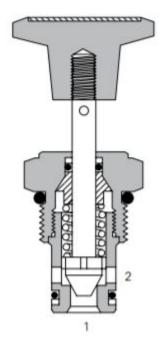
- Eaton 26002-RZG
- 0.5 CID
- Clockwise rotation

Motor:

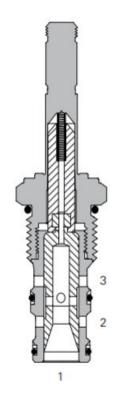
- Eaton 26702-DAB
- 0.54 CID
- .625" Keyed shaft
- Bi-rotation
- Internal drain


CV3-8 Check Valve (3):

- Application pressure 5000 psi
- Valve remains closed until spring bias is reached at port 1, lifting poppet and allows flow from 1-2
- Hardened steel ball limits leakage and extends service life


RV1-10 Relief Valve (2):

- Application pressure 3000 psi
- Direct acting
- Remains closed until predetermined setting is reached at port 1
- Fast acting, low pressure rise
- Low internal leakage, high flow rate

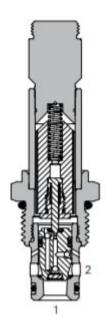


NV1-8 Flow Restrictor Valve (1):

- Application pressure 5000 psi
- Needle valve that cause a pressure drop as it passes from port to port
- Adjustable pressure selection through rotation of the screw

SV1-10 3-way Solenoid Valve (1):

- Application pressure 3000 psi
- When de-energized, allows flow from 1-2 while port 3 is blocked
- When energized, allows flow from 3-1 while port 2 is blocked
- Low leakage, compact design



SBV11-10-O 2-way Solenoid Valve (1):

- Application pressure 5000 psi
- Normally open
- When de-energized, valve is open for full flow in both directions
- When energized, pilot poppet closes causing main poppet to close
- Low leakage, compact design

SBV1-10-C 2-way Solenoid Valve (1):

- Application pressure 3000 psi
- Normally closed, bi-directional
- When de-energized, valve is blocked in both directions
- When energized, pilot poppet is released allowing main poppet to open allowing flow in both directions
- Low leakage, compact design

Analysis

Road Grade	7%
Weight (Vehicle + Rider)	300 lbs
Rolling Resistence (Bike Tire on Rough Road)	0.008
Tire Radius	13 in
System Pressure	1000 psi
Motor Efficiency	0.9
Pump Efficiency	0.95
Bike Speed	10 mph
Fluid Velocity	20 ft/s
Pedal Rate (RPM)	60

Motor and Pump Sizing

	Motor	Pump
Required CID	2.1185	4.8972
Selected CID	0.54	0.5
Required Mechanical Advantage	4	10
RPM	129.2308	600
GPM	1.2084	1.2987

Tube Sizing

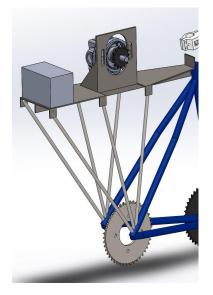
	Tube
Fluid Velocity	20 ft/s
Required Diameter	0.1569 in
Selected Diameter	0.25 in (0.375 in)

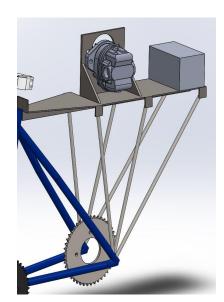
Pipe Calculations

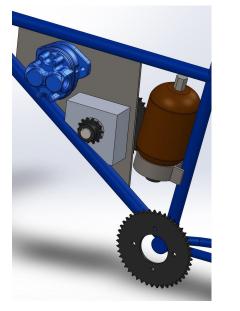
- $S = Allowable Stress \rightarrow S = 8000 psi (Aluminum 6061)$
- $E = Quality Factor \rightarrow E = 1$ (Seamless)
- $t = Wall Thickness \rightarrow t = .091$ in
- $C = Depth \text{ of Thread} \rightarrow C = 0 \text{ (Not Threaded Welded)}$
- $D = Nominal Outer Diameter \rightarrow D = 3/8 in$

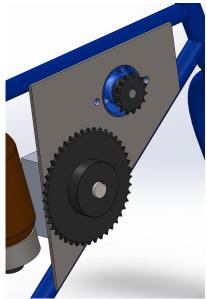
P = Working Pressure

$$P = \frac{2 * SE(t - C)}{D}$$

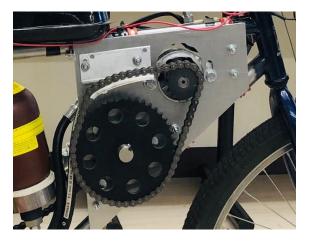

$$P = \frac{2 * 8000 \, psi \, (1.0)(.091 \, in - 0 \, in)}{\frac{3}{8} in}$$


 $P = 3882.67 \, psi$


Safety Factor = $3882.67 \text{ psi} / 3000 \text{ psi} \sim 1.3$



Mounting



Bearing Analysis

$$L_p = K_R \left(\frac{c}{P}\right)^3 \qquad \qquad C = P \sqrt[3]{L_5/K_R}$$

For 800 hrs operation at 200 rpm — L~10 million cycles

5% Failure Rate \longrightarrow K_R = 0.62

Loading/Life Limitations		
	Worst Case (P = 3000 psi)	Normal Operation (P = 1000 psi)
C ₁	1307.86 lbs	271.40 lbs
C ₂	792.96 lbs	90.71 lbs
L ₁	2.46 million cycles	275.8 million cycles
L ₂	11.06 million cycles	7387.34 million cycles

Fps

Fb2

Fgs

Purchased Bearings: C = 820 lbs

Shaft Analysis

Selected Shaft: Stainless Steel 316

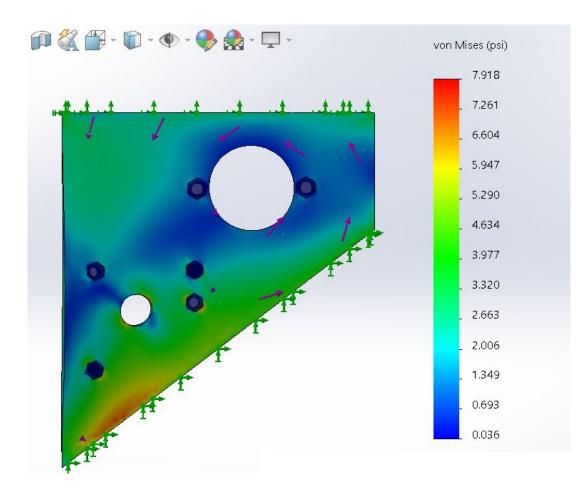
 S_{ut} =90 ksi S_{v} =40 ksi

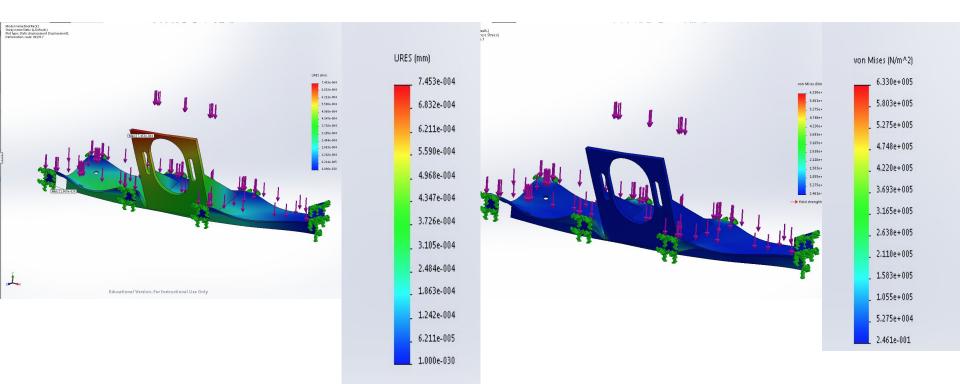
D = 1 in, Machined Surface, 99.99% Reliability

	Safety Factor (N _f)	
Worst Case (P = 3000 psi)	2.2669	
Normal Operation (P = 1000 psi)	8.1079	$N_{f} = \frac{d^{3}\pi}{32} \left[\frac{\sqrt{\left(K_{f}M_{a}\right)^{2} + \frac{3}{4}\left(K_{fs}T_{a}\right)^{2}}}{S_{f}} + \frac{\sqrt{\left(K_{fm}M_{m}\right)^{2} + \frac{3}{4}\left(K_{fsm}T_{m}\right)^{2}}}{S_{ut}} \right]^{-1}$ $S_{f} = 0.5 * S_{ut}C_{load}C_{size}C_{rel}C_{surf}$

Shaft Key Calculations

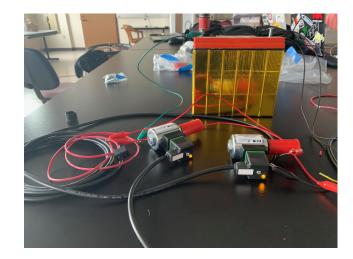
•	Pressure	Safety Factor
Large	3000 psi	22.5
Sprocket Key	1000 psi	64
Small	3000 psi	5.84
Sprocket Key	1000 psi	16.64





Load Analysis

Detailed design - Rear Gear



Fluid Power

Electronic Verification

Components	Voltage	Peak Current
2-Way Solenoid Valve (Normally Open)	12 V	1.912 A
2-Way Solenoid Valve (Normally Closed)	12 V	1.912 A
3-Way Solenoid Valve	12 V	2.432 A

Electronic Verification

	1		4	
E ,är	T			
		EAr	ETTPO	NEÐ
BLMFM				
Non-Soll	inthe later		Established 198	
		BLMFM	12.5 12V5A	h/20HR
Type Standby Use	Vo	Non-Spi	lable Sealed Lead Av	
Cycle Lise	Η.			
	-	Туре	Voltage Regulation	Initial Current
	-	Standby Use	13.50-13.80V	Less than 1.50A
Avaid short circuit De net shares in secled on		Cycle Use	14.40-14.70V	Less than 1.50A
Keep eway from sparks an Fochargesble after use Must be recycled or discess			CAUTION	
		Wold shart circuit So net charge in sealed c Grep away from sparts a fachargeable after use fixed be recycled or dispo	times CC	

EžPER	T pow	ER [®]	
	hed 1987		
EXP12180	12V18Ah/	20HR	
Non-Spillable Seale Central Verlag	ed Lead Acid Batte er Charge (25°C)	Ry	
CAUTION	Type	Witage Regulation	Initial Curvent
Avoid short circuit Do not charge in sealed container Keep away from sparks and fiames Rechargeable after use	Standby Use	13.55-13.887	Less than 5.4A
Must be recycled or disposed of property	Cycle Use	14.40-14.207	Less than \$.4A
Sur CE	Se j		

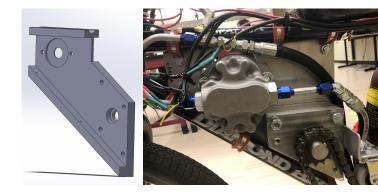
Components	Voltage	Amperage	Initial Current
EXP1250	12 V	5 A	1.5 A
EXP12180	12 V	18 A	5.4 A

Weight Verification

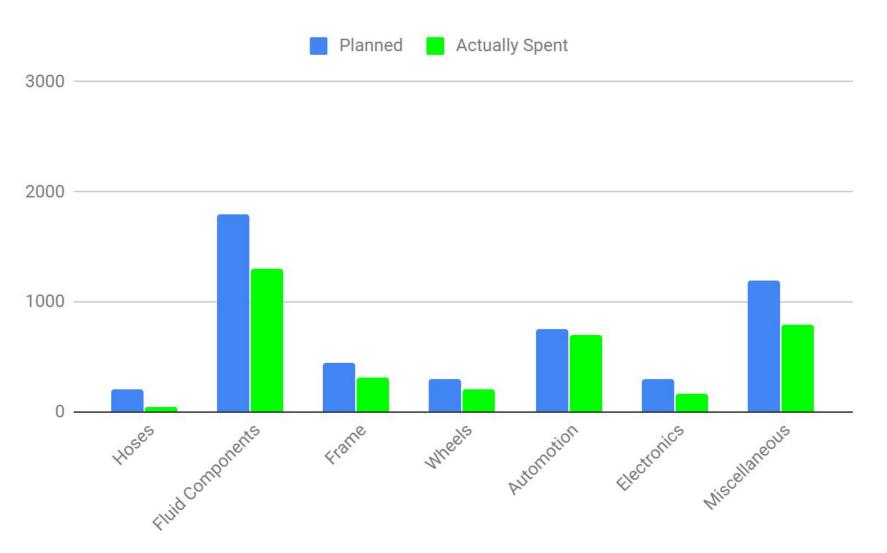
Weight Limit	Current Estimated Weight	
210 lbs Excluding Rider Includes Fluid	181 lbs.	

Key Components	Weight
Frame	30 lbs
Rear Wheel Assembly	9.8 lbs
Center Plate	1.2 lbs

Construction



Key Design Changes



- Battery holder from 3D print to metal
- Center pump mount from u-bolt clamp to steel band hanger clamp
- Back rack from custom design to prefabricated
- New Battery to meet current demands
- Moved motor mount
- Added chain tensioners
- New diodes
- Wider pedal spindle

Budget Summary

Lessons Learned

• Time management

 Leave time for unexpected problems and design changes

• Use the resources available

Others expertise is extremely helpful

• Delegate tasks early

• Keeps the whole team engaged and productive;

• Balance design objectives

- Torque vs speed
- Weight vs feasibility

Thank you!

We would like to extend a huge thank you to all the people who helped us

- NFPA, Ernie Parker, Jeff McCarthy, Stephanie Scaccianoce
- Kevin Lingenfelter
- Adam York, Ronald Delyser, Ann Deml
- Hans Green & JILA
- Lucky Bikes Recyclery
- Shane Ware and DU Bike Shop

Motor Sizing

Torque Required

T = rad * pull = 303.4574 lb-in

Required Motor CID

Disp = Torque* 2π / (Pressure*Motor Efficiency) = 2.1185

Motor Selected: 0.54 CID

Required Mechanical Advantage from Motor to Wheels

MA = required motor CID/ Selected motor CID = $3.9232 (\sim \frac{4}{9})$

Wheel RPM Required to Travel 10 mph: 129.2308 rpm Fluid GPM to Achieve 10 mph:

GPM = MotorCID* MA * RPM / 231 = <u>1.2084 gpm</u>

Pump Sizing

Required Pump CID:

CID = (GPM*231) / (RPM pedal*Pump Efficiency) = 4.8972

Pump Selected: 0.5 CID

Required Mechanical Advantage for Pedals to Pump:

MA = Required Pump CID / Selected Pump CID

MA = 9.7943 (~<u>10</u>)

Pump RPM:RPM = RPM pump * MA

RPM = <u>600</u>

Pump GPM: GPM = RPM pump * Motor CID) / 231

GPM = <u>1.2987</u>

Tubing

Fluid Velocity

vel = 20 ft/s

Net Area: A = 0.32*GPM/vel

A = 0.0193 in²

Required Diameter: D = 2*sqrt(A/π)

D = 0.1569 in

Selected Diameter: 1/4 in.

Accommodate Smaller Fluid Velocities: <u>3/2 in</u>.

Burst Pressure: Pb = (2*St*tm) / D Using a ¼-10S Small Pipe Pb = (2 * 15000psi * 0.065in) / 0.540in

Pb = <u>3611.1 psi</u>