

NFPA Education and Technology Foundation FINAL PRESENTATION IOWA STATE UNIVERSITY TEAM ADVISOR: Aaron Darnell DATE: 04/11/19

Photo of Vehicle

Team Introduction

Mitchell Hoefling

- ► Year
 - ► Senior
- Major
 - Agriculture Power and Machinery Engineer
- Hobbies
 - Restoring vehicles
 - Working out
 - Carpentry
 - Hiking/ Camping

Jordan Peterson

- ► Year
 - ► Senior
- ► Major
 - Agriculture Power and Machinery Engineering
- Hobbies
 - ► Fishing
 - Working on vehicles
 - ► Golfing

Logan Darnall

- ► Year
 - ► Senior
- ► Major
 - Agriculture Power and Machinery Engineering
- Hobbies
 - Basketball
 - Weight lifting
 - Trap shooting

Dylan Stouder

- ► Year
 - ► Senior
- ► Major
 - Agriculture Power and Machinery Engineering
- Hobbies
 - Sports
 - Traveling
 - Spending time with friends

School Mentor: Dr. Brian Steward

 Professor of Agricultural and Biosystems Engineering at Iowa State University

► Education:

- BS and MS in Electrical Engineering from South Dakota State University
- Ph.D. in Agricultural Engineering from the University of Illinois at Urbana-Champaign.

► Teaching areas include:

- Fluid power engineering and technology
- Sustainable engineering
- Dynamic systems modeling and simulation

► Research topics:

- Fluid Power: Modeling and simulation, sensors, contamination control
- Virtual prototyping of off-road machine systems

Problem Statement and Objective

 Design and build a vehicle that is driven using hydraulic components to compete in sprint, endurance, and efficiency races. The vehicle must be clean, concise, and easy to modify while satisfying all design criteria.

Summary of Midway Review

Bike Decision Matrix

	6	3	4	2	2	17	
	35%	18%	24%	12%	12%	100%	
Option	Price	Weight	Stability	Ease of Operation	Ease of Installation	Score	Rank
2 wheel design	4	4	0	1	2	2	3
3 wheel trike design	3	3	3	4	4	3	1
4 wheel design	1	1	4	4	3	2	2
3 wheel recumbent design	0	3	3	4	4	2	3
*If any category had a 0							
we automatically took							
that design out							

Last Year's Bike

New Trike

System Schematic

Manifold Schematic

Port Code	Port Name		
A1,A2,A3,A4, A5	Available Accumulator Ports		
Μ	Motor		
HP	Hand Pump		
G	Gauge		
RB	Regenerative Braking		
Т	Tank		

Parts List

- ► 1 quart accumulator x 2
- 0.601 in^3/stroke hand pump
- 0.40 in^3/rev Eaton 26001 pump
- ▶ 0.62 in^3/rev Eaton 26703-DAA gear motor
- 2-position, 2-way NC solenoid valve x 2
- 2-position, 2-way NO solenoid valve x 2
- Direct acting pressure relief valves x 2
- Manual 2-position, 2-way NC valve
- Flow control needle valve
- Check valves x 6
- SAE-6 hoses ranging from 12,18,20,24,30 inches in length
- Required line bodies and fittings for above components

Primary Mover Testing

- Rode workout bikes to find maximum torque and power output of rider
 - Sprint (45 second trial), 0.90 HP at 110 RPM and 50-60 ft-lb resistance
 - Endurance (8 min trial), 0.60 HP at 90 RPM and 20-30 ft-lb resistance

System Calculations

6

4

2

0 0.000

0.200

0.400

Horse Power (HP)

0.600

0.800

1.000

- From this graph at a ground speed of 8 miles per hour, the rider will need to output about 0.53 HP.
- *All calculations assuming 70% efficiency

Vehicle Construction

Reservoir

- Aluminum (lightweight)
- Easy to access
- Distributes weight on bike
- Supported using mounting tabs attached to bike frame

Motor and Pump

- 1/8" steel plating for mounting
- Allows for vertical adjustment of the pump and motor

Gear Box

- Vex dog shifter
- Allows us to change gear for the endurance and sprint races
- 1/2" hex shaft
- High Gear 1:8.6 ratio
- Low Gear 1:4.6 ratio

Regenerative Braking

- Arduino Uno
- NC and NO solenoid valves
- 12 volt battery with casing
- Switch-activated at handlebar

Hand Pumps and Accumulators

- 2 quart accumulators
- 2 hand pumps, one on each side of the bike
- Hand pumps mounted to steel brackets and welded to the bike's rear axle
- Accumulators activated using a pull valve attached to handlebar brake

Vehicle Testing

- During vehicle testing we were running into the follow problems:
 - Leaks
 - In-proper plumbing
 - Lose chain
 - Flexing motor and pump plates

Improvements

- Added supports between pump and motor plates
- Switched gearbox side plates to steel
- Fixed lose chain by adjusting the pump mounting plate down

Closing Thoughts

- Time management and planning is key
- Vehicle testing is very important
- Learned how to apply knowledge gained from coursework to a real world project
- Learned how to incorporate many different constraints and criteria into a design

Special Thanks

Dr. Brian Steward

Aaron Darnell

Saxon Ryan

Norman Muzzy

All competition sponsors

Questions?