

NFPA Education and Technology Foundation FINAL PRESENTATION UNIVERSITY OF UTAH FACULTY ADVISOR: DR. CHEN 04/11/2019

Photo of Vehicle

Team Introduction

Dr. Chen

Gavin Causse

Kyle Sanchez

Problem Statement

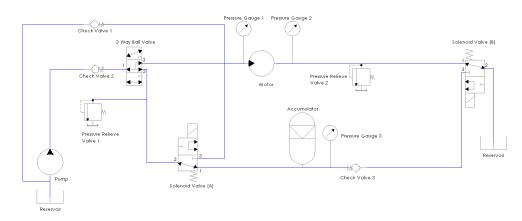
- Create a vehicle that is human powered, and uses fluid power components to transmit power from user to forward motion.
- To compete in the Fluid Power Vehicle Challenge.
- Gain experience in fluid power systems.
- Create networking opportunity with industry experts.
- Establish a recurring project for the University of Utah Mechanical Engineering Department.

Summary of Midway Review

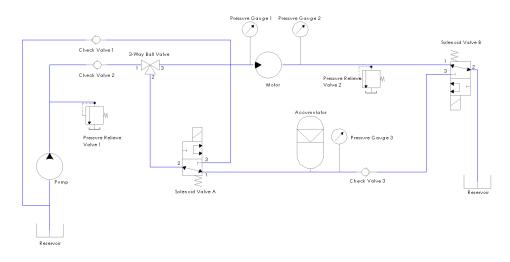
- Our design objectives were:
 - 1. Low cost
 - 2. Reliability
 - 3. Efficient
 - 4. User friendly
 - 5. Meet/exceed competition specifications
- The vehicle was designed around the individual fluid circuit components from our circuit diagram.
 - Vehicle Design had a focus of simplicity.
- Fluid Circuit Design
 - Goal was to minimize the number of valves with a greater emphasis on individual components being able to perform in multiple drive modes.

Summary of Midway Review

- Hardware Selection from Analysis
 - We selected a .58 CID pump, .62 CID bidirectional motor, and sized our lines based on advice (-6 for pressure/return lines, -12 for the suction line).

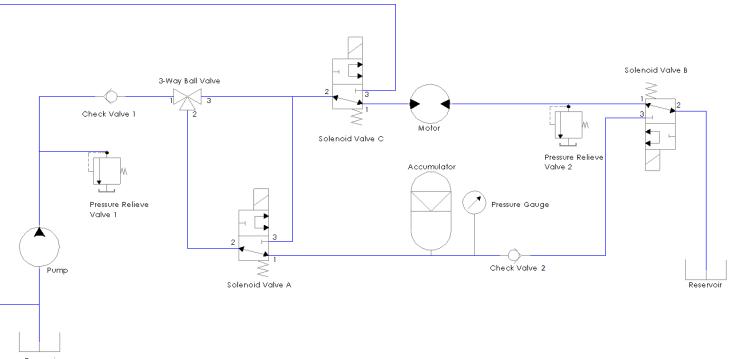

Basic Torque Calculations Equation		Value	Units
Rear Wheel Torque Necessary to Create movement	Tr=Frictional coefficient*rear wheel weight*wheel radius	116	[ft-lb]
Front Wheel Torque Necessary to Create movement	Tf=Frictional coefficient*front wheel weight*wheel radius	97	[ft-lb]
Fluid motor torque	Torque=(PSI*d)/(100*.0628)	247	[in-lb]
Torque conversion from [in-lb] to [ft-lb]	[ft-lb]=[in-lb]/12	21	[ft-lb]

Pump Calculations	Equation	Value	Units
Flow out of pump	Flow out=(Fluid displaced by motor per revolution* pump RPM)/231	3	[GPM]
Flow into pump	Flow in=Flow out/Volumetric efficiency	3.3	[GPM]
Overall efficiency	Overall efficiency=volumetric efficiency*mechanical efficiency	0.89	[]
Input horsepower	Input horsepower=(Pump flow rate out [GPM]*pressure[psi])*.0007	6	[hp]
Input power	Input Power=input horsepower*745.7	4718	[W]
Gear ratio needed for pump	Gear ratio=Pump RPM/ input RPM	15	[]


Wheel Calculations	Q=GPM, d=CID		
Fluid motor speed	Speed= (231*Q/d)	1123	[RPM]
Gear ratio for wheel	Torque needed/Torque we have	4.7	[]
RPM of wheel	Motor Speed/Gear ratio(rounded up)	160.4	[RPM]
Speed of the bike	peed of the bike (RPM*2*π*radius)/60 18		[feet/sec]
		12	[MPH]

Summary of Midway Review

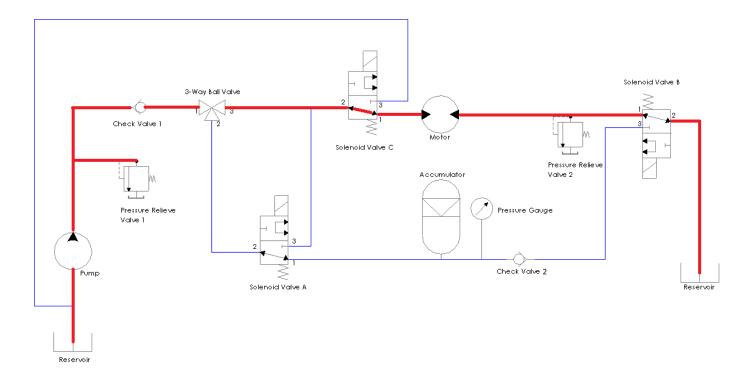
Fluid Circuit Diagram Before Midterm Review



Fluid Circuit Diagram After Midterm Review

Final Fluid Circuit Diagram

- 1. Consists of 4 different modes:
- Direct Drive
- Charging
- Discharging
- Regenerative Braking
- 2. Control by valves positioning using 2 switches and 1 handle.
- 3. Safety- Pressure relief valves.

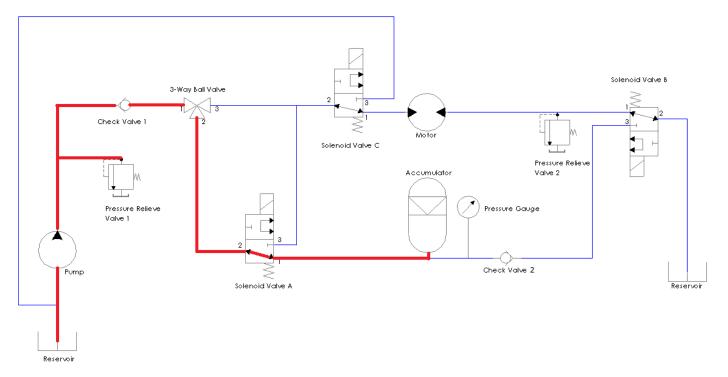


Reservoir

Direct Drive Mode

Task: Pumping the fluid directly from reservoir to the motor Challenge: Sprint Race Valves Position:

- 3 way ball valve = 90° Angle (allow flow from pump to motor)
- Solenoid Valve (A) = de-energized
- Solenoid Valve (B) = de-energized (allow flow from 2 to 1)
- Solenoid Valve (C) = de-energized (allow flow from 1 to 2)

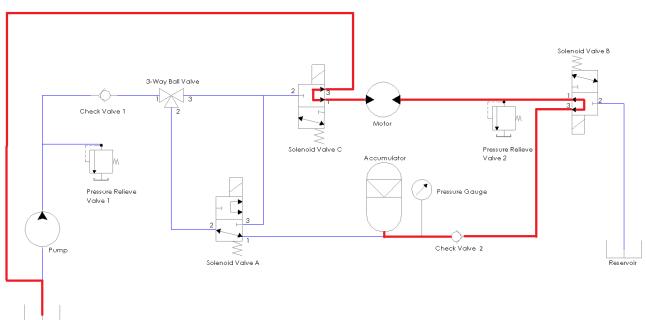


Charging Mode

Task: Charging the accumulator Challenge: Efficiency test Valves Position:

- •3 way ball valve = 0° Angle (allow flow from pump to accumulator)
- •Solenoid Valve (A) = de-energized (allow flow from 2 to 1)
- •Solenoid Valve (B) = de-energized
- •Solenoid Valve (C) = de-energized

Regenerative Braking Mode

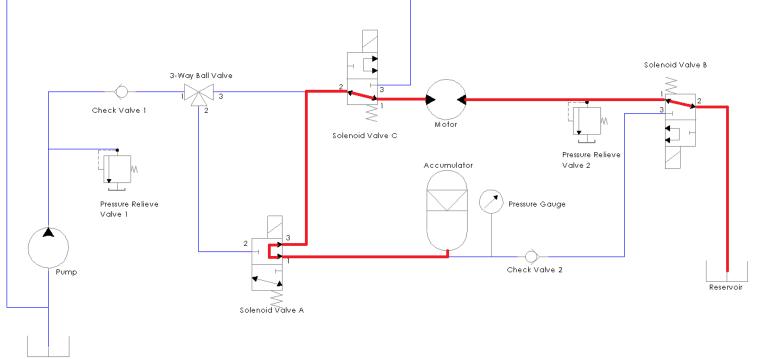


Task: Use the momentum from the bike to turn the motor to pressurize fluid

- back into accumulator
- Challenge: Endurance test
- Valves Position:
- •3 way ball valve = any
- •Solenoid Valve (A) = de-energized

Reservoir

- •Solenoid Valve (B) = energized (allow flow from 1 to 3)
- •Solenoid Valve (C) = energized (allow flow from 3 to 1)



Discharging Mode

Task: Discharge the accumulator Challenge: Efficiency and endurance test Valves Position:

- •3 way ball valve = Any
- •Solenoid Valve (A) = energized (allow flow from 1 to 3)
- •Solenoid Valve (B) = de-energized
- •Solenoid Valve (C) = de-energized

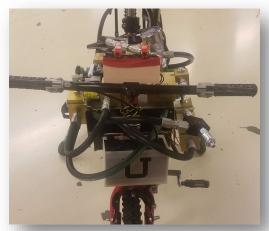
Vehicle Construction

- Initial Design and layout were modeled in Solidworks, in order to help with fitment and design of bracketry and layout of vehicle
- From this model, work was divided up by systems
 - Pump and Motor Valve Assembly Electrical Circuitry
 - Accumulator •
- Reservoir

Final Fluid Power Vehicle

Vehicle Construction

- Pump and Pump Gearing
 - Designed to fit under bottom tube of bike, the pump is turned by a chain attached to a gear on the pedals
 - Due to interference and chain binding issues, the intermediate gear was removed, lowering the overall gear ratio
- Motor and Motor Gearing
 - The motor was designed to mount on the back tire support frame
 - The gear was bolted directly to the hub of the wheel
- Accumulator
 - The Accumulator was mounted on a bicycle rack behind the rider



Vehicle Construction

- Valve Assembly
 - Due to size of connection pieces, the final valve assembly was broken up into parts, allowing for different bodies to be mounted in different locations
- Reservoir
 - Based off of the design in the SolidWorks model, the reservoir was welded out of steel plates. Several port connections were cut and welded into the reservoir body.
- Electrical Circuitry
 - An Arduino controlling the solenoid switches was mounted on the handlebars, with the battery situated in front of the handlebars

Direct Drive Mode

• Gear Ratio = 7:1

Test 1

Parameter	Value
Distance Traveled	270 ft
Time Elapsed	60 seconds
Average Speed	3 mph

Identified loose pedal extensions causing difficult pedaling

Direct Drive Mode

• Gear Ratio = 7:1

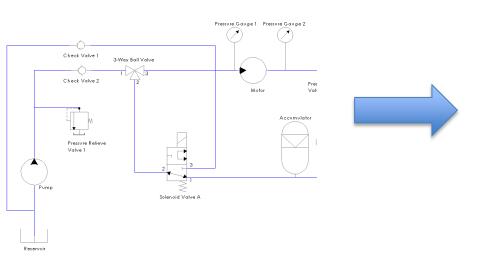
Test 2

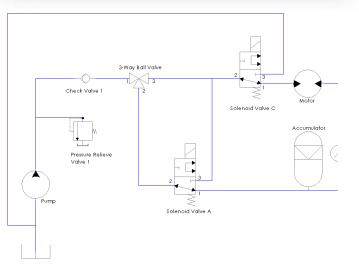
ensions	Parameter	Value
iy	Distance Traveled	120 ft
	Time Elapsed	16 seconds
	Average Speed	5 mph
	Avg Speed from Test 1	3 mph
A State	Improvement	<mark>2 mph</mark>

Secured pedal extensions to remove play

Accumulator Drive Distance Analysis:

Parameter	Value
Pre-charged Pressure	900 psi
Fluid Pressure	1100 psi
Distance Traveled	100 ft





Regenerative Braking

- In our initial test, the regenerative braking didn't work due to difficulty of overcoming the check valve in the circuit
- The Check valve was replaced by a Solenoid valve

Lessons Learned

- A manifold would reduce the number of fittings and valve bodies required
- Suction lines should be short and direct, and not have a check valve on low pressure side
- Can save money on suction hoses by not buying 3000 psi rated hoses
- Beware of current draw through a transistor for solenoid control

Thank you to the NFPA and industry sponsors!