



Braden Keown Caleb Jackson Caleb Barley



## Outline





- Team Introduction
- Problem Statement and Objectives
- Initial Design & Calculations
- Changes to Design & Bicycle Construction
- Performance & Evaluation
- ≻ Hardware Used
- Cost Evaluation
- Occurred Problems, Mitigation & Lessons Learned
- Conclusion
- Acknowledgements
- ➤ References



## Meet the Team











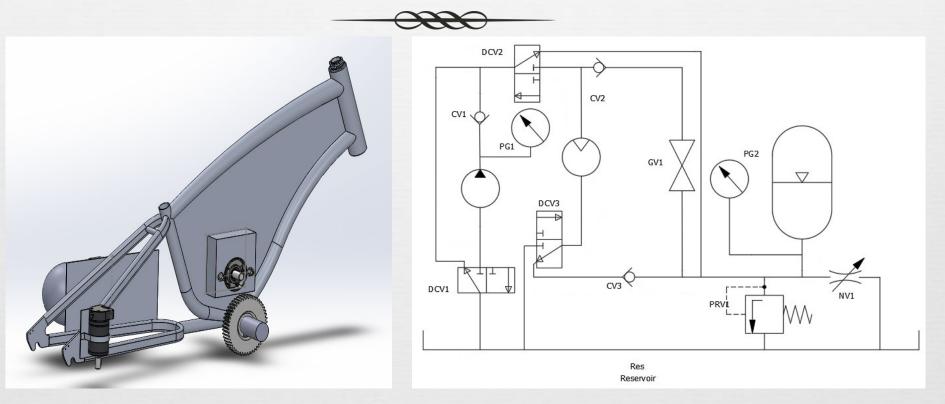
Braden Keown

#### Caleb Jackson

Caleb Barley

Dr. Yogendra Panta




## Problem Statement and Objectives



Improve on the previous years design
Make it more ergonomic
Learn more about hydraulics and its application
Learn more about the design process

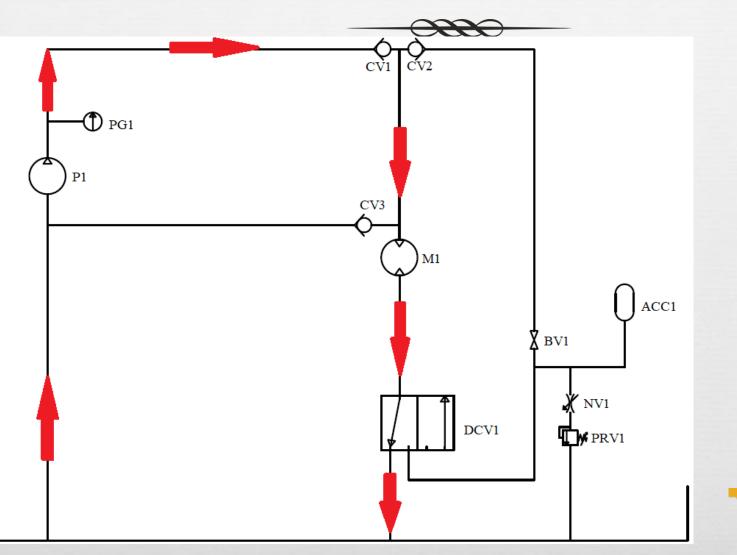


## Initial Design & Calculations



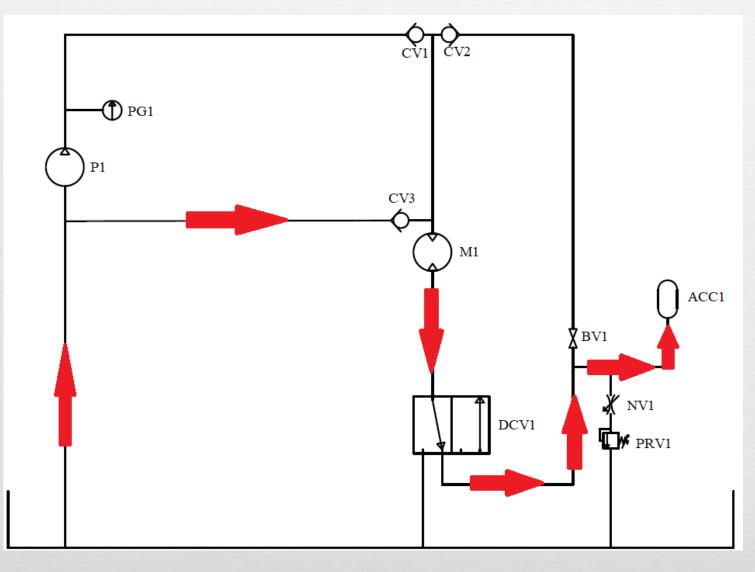
Initial layout of components and Circuit Diagram




## Initial Design & Calculations

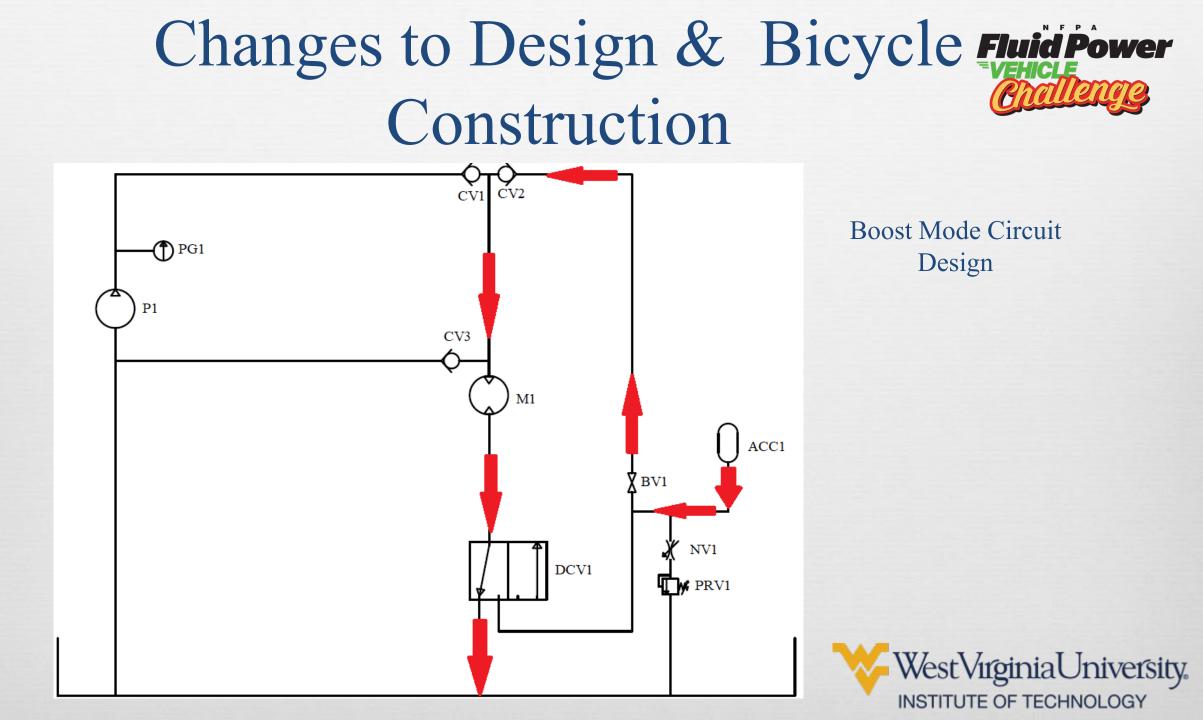


| Pull [lb]            | 8.995   |
|----------------------|---------|
| Wheel Torque [in lb] | 233.9   |
| GR1                  | 1.05556 |
| Wheel [RPM]          | 193.846 |
| Motor [CIR]          | 1.551   |
| Flow Rate [GPM]      | 1.3     |
| НР                   | 0.758   |
| GR2                  | 4       |
| Pump [RPM]           | 240     |
| Pump [CIR]           | 1.25    |


**Initial Calculations** 



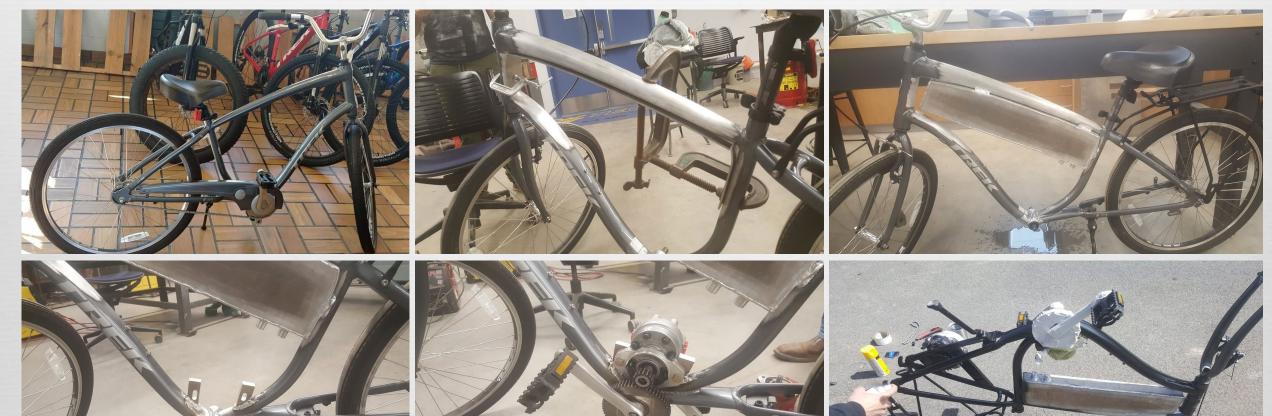



Direct Drive Circuit Design

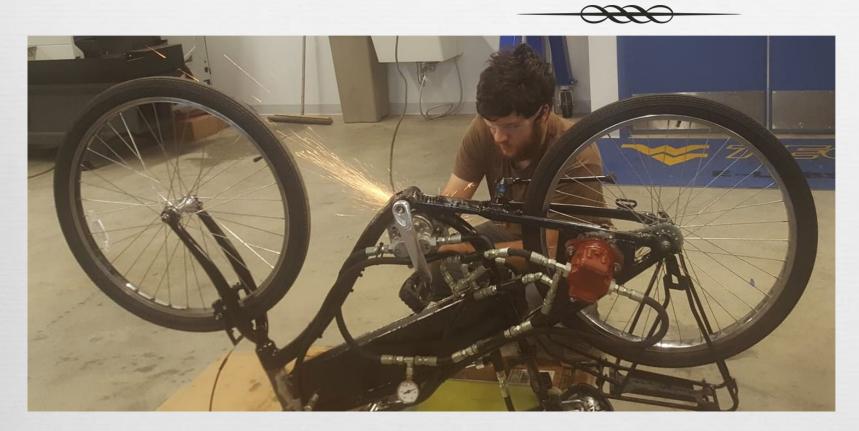




Regenerative Braking Circuit Design






Bicycle Design: From the initial design we changed how the pump and motor are mounted, the size of the reservoir. Originally the pump was to sit in the centre of the bike by offset from centre plate, our final design uses two tabs welded from the centre (4th picture, next page). The motor uses two structural members welded to the frame instead of a plate. The volume of the reservoir is smaller as after volume calculations it didn't need to be so big.









Caleb Jackson grinding off the misaligned gear so we can put the new water jet cut gears on.





**Final Product** 



## Performance & Evaluation

| Standard Da | ata  |  |
|-------------|------|--|
| GR1         | 3    |  |
| Pump [CIR]  | 0.58 |  |
| Motor [CIR] | 0.62 |  |

| Minimum input (60 RPM) |        |                       |        |  |  |
|------------------------|--------|-----------------------|--------|--|--|
| Gear System 1          |        | Gear System 2         |        |  |  |
| System Pressure [psi]  | 1000   | System Pressure [psi] | 1000   |  |  |
| Pump Min [RPM]         | 210    | Pump Min [RPM]        | 210    |  |  |
| Flow Rate [GPM]        | 0.527  | Flow Rate [GPM]       | 0.527  |  |  |
| HP                     | 0.308  | HP                    | 0.308  |  |  |
| GR2                    | 1.0556 | GR2                   | 0.5    |  |  |
| Motor [RPM]            | 196.35 | Motor [RPM]           | 196.35 |  |  |
| Wheel [RPM]            | 207.3  | Wheel [RPM]           | 98.175 |  |  |
| Wheel Torque [in lb]   | 93.5   | Wheel Torque [in lb]  | 197.45 |  |  |
| Pull [lb]              | 3.6    | Pull [lb]             | 7.6    |  |  |
| Speed (MPH)            | 16.04  | Speed (MPH)           | 7.6    |  |  |
| Weight [lb]            | 90     | Weight [lb]           | 90     |  |  |

| Maximum input (≈125 RPM) |        |                      |        |  |  |
|--------------------------|--------|----------------------|--------|--|--|
| Gear System 1            |        | Gear System 2        |        |  |  |
| Pump Max [RPM]           | 375    | Pump Max [RPM]       | 375    |  |  |
| Flow Rate [GPM]          | 0.9415 | Flow Rate [GPM]      | 0.9415 |  |  |
| HP                       | 0.61   | HP                   | 0.61   |  |  |
| Motor [RPM]              | 350    | Motor [RPM]          | 350    |  |  |
| Wheel [RPM]              | 370    | Wheel [RPM]          | 175    |  |  |
| Wheel Torque [in lb]     | 93.5   | Wheel Torque [in lb] | 197.45 |  |  |
| Pull [lb]                | 3.6    | Pull [lb]            | 7.6    |  |  |
| Speed (MPH)              | 28.62  | Speed (MPH)          | 14.31  |  |  |



Fluid Power

### Hardware Used

 $\rightarrow$ 





#### Eaton Gear Pump 0.58 CIR 26003-RZJ



#### Eaton Gear Motor 0.62 CIR 26703-DAA



SunSource Ball valve, 2 way, 2000 PSI, -6 SAE port



### Hardware Used

 $\rightarrow \rightarrow \rightarrow \rightarrow$ 





SunSource Ball valve, 3 way, 3000 PSI, -6 SAE port 3000 psi, 1 quart Accumulator







18 & 19 tooth sprockets (respectively)



### Hardware Used







In-Line Needle Valve, 3/8" FNPT Port

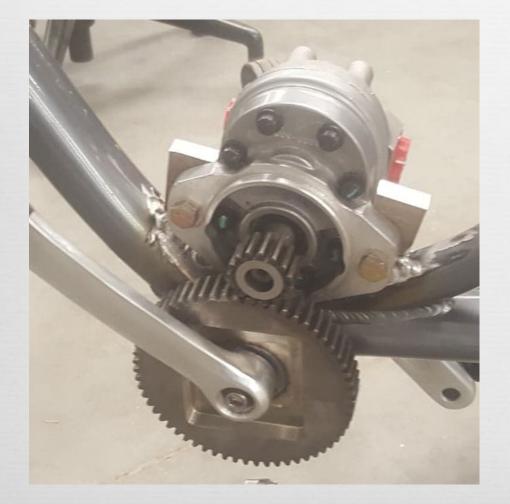
Relief Valve, 1000 to 2500 psi, 1/2" NPT, 16.0 GPM, Steel



16 & 48 tooth gears (respectively) made by water jet cutting

West Virginia University.

INSTITUTE OF TECHNOLOGY

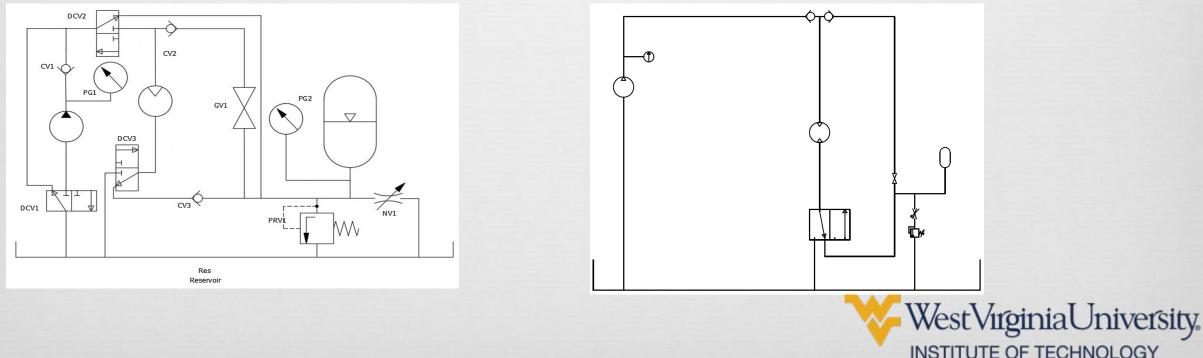

## **Cost Evaluation**



|    | Bill of Materials                                                    |                |           |                  |          |               |             |  |
|----|----------------------------------------------------------------------|----------------|-----------|------------------|----------|---------------|-------------|--|
|    | Part Name                                                            | Schematic Name | Vendor    | Part Number      | Quantity | Cost Per Unit | Total Cost  |  |
| 1  | 1 Quart Accumulator 3000psi                                          | ACC            | McMaster  | 59595K18         | 1        | \$ 676.96     | \$ 676.96   |  |
| 3  | Gear Motor, 0.62 CID, Keyed Shaft .625", Bi-rotatoin, internal drain | М              | Eaton     | 26703-DAA        | 1        | \$ 274.69     | \$-         |  |
| 4  | HP Ball Valve 3/8" SAE 3 Way                                         | BV             | SunSource | BV3D-0375SA-1111 | 1        | \$ 51.43      | \$ 51.43    |  |
| 4  | HP Ball Valve 3/8" SAE                                               | BV             | SunSource | BVH-0375S-1111   | 1        | \$ 54.72      | \$-         |  |
| 5  | Gear Pump, 0.58 CID, 9 tooth spline, CW rotation                     | Р              | Eaton     | 26003-RZJ        | 1        | \$ 178.87     | \$-         |  |
| 7  | Relief, Direct Acting                                                | PRV            | Grainger  | RD1850H          | 1        | \$ 75.19      | \$-         |  |
| 8  | Flow Control, Needle Valve                                           | NV             | Zoro      | WNV-600          | 1        | \$ 36.43      | \$-         |  |
| 9  | Fitting, -6 JIC male "T"                                             | MMMTJ6         | Eaton     | 2033-6-6S        | 5        | \$ 1.84       | \$ 9.20     |  |
| 10 | Fitting, -6 JIC, male to female swivel with male branch              | MMFTJ6         | Eaton     | 203101-6-6S      | 2        | \$ 2.59       | \$ 5.18     |  |
| 11 | Fitting, -6 JIC male to -6 JIC female swivel, 45 degree              | FF45J6         | Eaton     | 2070-6-6S        | 10       | \$ 1.74       | \$ 17.40    |  |
| 12 | Fitting, -6 JIC male to -6 JIC female swivel, 90 degree              | MF90J6         | Eaton     | 2071-6-6S        | 16       | \$ 1.98       | \$ 31.68    |  |
| 13 | M/M 90 Joint SAE 6                                                   | MM90J6         | Eaton     | 2039-6-6S        | 3        | \$ 3.09       | \$ 9.27     |  |
| 14 | M/M Connectors SAE 6                                                 | MMC6           | Eaton     | 202702-6-6S      | 2        | \$ 2.12       | \$ 4.24     |  |
| 15 | Adapter M/M Straight SAE 12 - SAE 6                                  | MFC6           | Eaton     | 202702-12-6S     | 2        | \$ 9.13       | \$ 18.26    |  |
| 16 | Adapter M/F Straight SAE 12 - SAE 6                                  | AS126          | Eaton     | FF1010-1206S     | 3        | \$ 7.27       | \$ 21.81    |  |
| 17 | Female Tube Fittings SAE 6                                           | FTF6           | Eaton     | 1AA6FJ6          | 10       | \$ 3.00       | \$ 30.00    |  |
| 18 | Male Tube Fittings SAE 6                                             | MTF6           | Eaton     | 1AA6MJ6          | 15       | \$ 3.00       | \$ 45.00    |  |
| 19 | FF 90 Joint SAE 6                                                    | FF90J6         | Eaton     | C3509X6          | 2        | \$ 3.74       | \$ 7.48     |  |
| 20 | Tube SAE 6                                                           | Т6             | Eaton     | GH663-6          | 14       | \$ 5.09       | \$ 71.26    |  |
| 21 | Pressure Gage SAE 6                                                  | PG             | McMaster  | 4089K61          | 1        | \$ 10.25      | \$ 10.25    |  |
| 22 | Metal Gear - 14-1/2 Degree Pressure Angle 15                         | G1             | McMaster  | 6325K79          | 1        | \$ 28.62      | \$ 28.62    |  |
| 23 | Metal Gear - 14-1/2 Degree Pressure Angle 60                         | G2             | McMaster  | 6325K4           | 1        | \$ 90.10      | \$ 90.10    |  |
| 25 | Aluminum Sheet 3mm 3ftx 3ft                                          | AL             | Mc Master | 89015K75         | 1        | \$ 160.73     | \$ 160.73   |  |
|    |                                                                      |                |           |                  |          |               | \$ 1,288.87 |  |

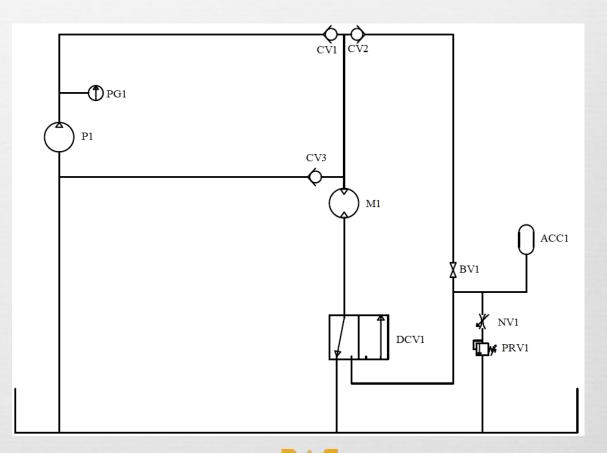


# Occurred Problems, Mitigation Fluid Power & Lessons Learned




We had to machine our gears to allow them to fit between the pedals, the problem is our milling machine is 3 degrees unbalanced so the face at which the pedal sits against is misaligned, causing the gears to mesh incorrectly. Consequently, causing pedaling issues. Therefore we had to instead machine new gears from our water cutting jet.




## Occurred Problems, Mitigation Fluid Power & Lessons Learned

We also had problems with our parts, we ordered SAE 6 fitting control valves and check valve, but the vendor ended up sending us SAE 8 fitting valves instead. The solution was to use last years check valves and directional control valve, and consequently making a new circuit diagram (right), as we only have one directional control valve instead of three.



# Occurred Problems, Mitigation Fluid Power & Lessons Learned

The last problem we faced was with our regenerative braking not working, the first part was having a free spinning back wheel, we fixed this by welding it together. The second part was to do with the new developed circuit. We did not add in a way for the circuit to bypass the pump and flow oil into the accumulator through the motor, the solution involved adding a check valve to the pump.



iversity.

INSTITUTE OF TECHNOLOGY

## Conclusion





This experience taught us that your design is not always the right approach. Sometimes you need to step back and use a simpler, better solution.

Through the many problems that occurred throughout the construction process, with the help of others insight to our problems we were able to mitigate the issues that arose as a team.

From this we have become better engineers and learned what to expect in the working world.



## Acknowledgements





Special thanks to the NFPA for hosting and funding this project, to Stephanie Saccianoce and Lynn Beyer, to our mentor Dalton Brady, to Bernie Parker, to our advisor Yogendra Panta, to Gary Duffield, to the WVU Tech lab assistants, all for helping us through this process.



### References





Berendsen Fluid Power, Inc. (2001). *Fluid power designers' lightning reference handbook*. Tulsa, OK: Berendsen Fluid Power.



## Thank you for Your Time





#### Are there any questions?

