

NFPA Education and Technology Foundation

Final Review University of Denver Advisor: Adam York April 16, 2020

Agenda

- Introductions
- Midway Summary
 - o Project Scope
 - Design Objectives
 - Fluid Power Circuit Design
 - o Analysis
 - o Selection Hardware
- Vehicle Construction
- Race Simulations
- Safety Features
- Lessons Learned

Introduction

Hayden Dean Mechanical Lead

Molly Kuettel Project Lead

Simon Glezer Financial Lead

Kwabena Asare Testing Lead

Jeremy Isaac CAD Lead

Tim O'Meara Electrical Lead

Project Scope

- The project goal is to design and construct a single-rider vehicle operated using fluid power including energy storage and regeneration technology
- The scope of the project includes:
 - o Research
 - o Design
 - o Analysis
 - Fabrication
 - Competition
- The requirements for the project and the rules of the competition are based on the NFPA and FPVC

Design Objective

Our team created a stretch goal to design and fabricate a custom frame integrated with the other NFPA requirements.

2018-2019 Design

2019-2020 Design

Vehicle Design

Fluid Power Circuit Design

Precharge Circuit

Drive Circuit

Regenerative Circuit

Boost Circuit

Static Frame Analysis

Total Distributed Applied Force: **300 lbs** Maximum Stress: **3.57 ksi** 6061-T6 Yield Strength: **39.89 ksi**

Component Selection

- Eaton Bi-Directional Motor
 - Displacement: 0.62 CID
 - o Mating: Keyed
 - Output Rotation: Bi-Directional

- SteelHead Composites 1 Gallon Carbon Fiber Accumulator
 - o Pressure: 3000 psi
 - O Weight: 11.12 lbs

- Doering Lever-Operated Push to Pump
 - Displacement: 0.601 CID
 - Max psi: 5000

Motor Connection

Motor Gear Teeth: 12 Motor Gear Safety Factor: 1.54 Wheel Gear Teeth: 48 Wheel Gear Safety Factor: 1.60 Gear Ratio: 4.0

Mechanical Advantage: 2.03

Construction

Construction

- Custom frame
 - o 6061 Aluminum
 - 0 1.5 inch square tubing
 - o 5000 series filler rod
- Cutouts milled into members to allow for more secure welds

Front Wheel Assembly

Construction

• Designed & Machined

- Back wheel dropouts
- Front wheel hubs
- o Ackermann steering

Ackerman Steering Holes

Rear Dropout

Chain Tensioner

Construction

Components	Status
Frame	Complete
Custom Specced Wheels	Complete
Axles	Complete
Hubs	Complete
Pump Mounts	Complete
Hydraulic Circuit Mount Plate	Complete
Rear Dropouts	Complete
Seat Mounted	Complete
Hydraulics Hoses	In Progress
Tank Mount	In Progress
Steering Assembly	In Progress

Safety Features

- Chain guard
- Pressure gauge
- Independent brakes on all wheels
- Rider Safety:
 - o Helmet
 - o Seat belt

Hydraulic Construction

- Goal: Limit potential losses
 - Limit bends, 90 degree turns, and T-joints
 - o Elevated tank location
 - Accumulator connected to manifold via straight hose
 - Limit lengths of hoses

Race Simulation

Human Power Input

Sprint Race Simulation

Efficiency Challenge Simulation

Efficiency Challenge Simulation

Endurance Race Simulation

Lessons Learned

- Improvements
 - T-joints
 - Use legs for power
 - Learn more hydraulics upfront
- Takeaways:
 - Custom frame
 - Matlab simulation code for future optimization
 - Project interest for following years
 - Increased knowledge of hydraulic power

Thank You

- NFPA Competition Advisors
 - Stephanie Scaccianoce
 - o Darrell Leighton
 - o Ernie Parker
- University Advisors
 - o Adam York
 - o Justin Huff
 - o Christopher Sturt

