

NFPA Education and Technology Foundation FINAL PRESENTATION Fluid Raider Racers Dr. Luis A. Rodriguez 04/16/20

Team Introduction

Top picture left to right:

- Luke Ponga, ME, MSOE
- Justin Zielinski, ME, MSOE
- Johanna Borschel, ME, THL ٠
- Frerich Asmus, ME, THL •
- Kristof Barantke, ME, THL ٠
- Trevor Howard, ME, MSOE •

2

Problem Statement & Motivation

- Designing and building a human-operated vehicle that will transfer human power into propulsion incorporating fluid power.
- Take part in competition of National Fluid Power Association (NFPA)
 - Sprint race
 - Endurance Race
 - Efficiency Challenge
- Gain an improved understanding of the fluid power industry
- Build future career skills

Objectives

- Incorporate pneumatics into hydraulic design
- Place in top 3 in all three races but focus on endurance and efficiency race
- Create clean and compact design
- So Place rider in riding position to be able to deliver maximum power
- Vehicle should be safe for the rider
- Hydraulic control components are easily accessible
- Include electrically controlled valves

Choosing a frame

		Perfor-		Manu-			Sum with	Sum without
	Safety	mance	Efficiency	facturing	Various	Costs	weighting	weighting
Weighting	20.00%	40.00%	20.00%	10.00%	5.00%	5.00%		
Road bike	3	5	5	3	4	5	4.35	25
Cruiser bike	2	4	4	2	2	5	3.35	19
Trike 2013	4	2	2	3	2	3	2.55	16
Scooter	1	4	3	1	4	2	2.8	15
Wheelchair	1	3	1	2	1	1	1.9	9
Go-Kart	5	2	1	4	5	1	2.7	18

Positioning of parts

Hydraulic Circuit

1. Manifold Body

- 2. x2 CV3-8-P-0-004: Check, 1 to 2 (Size 8, 4 PSI)
- 3. x1 CV3-10-P-0-3: Check, 1 to 2 (Size 10, 3 PSI)
- 4. x2 RV1-10-S-0-30: Relief, Direct Acting
- 5. x1 NV1-8-S-0: Flow Control, Needle Valve
- 6. x1 SBV11-10-0-0-00: Solenoid, 2 pos. 2 way Bi-poppet, normally open
- 7. x1 SBV1-10-C-0-00: Solenoid, 2 pos. 2 way Bi-poppet, normally closed
- 8. x1 SV1-10-3-0-00: Solenoid, 2 pos. 3 way Spool 1-2/1-3
- 9. x1 CV06N: 3/8" External Check Valve

Note: all numbered parts, except for number 9, were chosen from the provided competition catalog.

Hydraulic Circuit Modes

Direct

Key Features:

- Most components fit in manifold
- Ease of control with solenoid valves
 - Quickly change between circuits

Hydraulic Circuit Modes

Charging the Accumulator

Selection of hardware

- Parts were selected and provided by the NFPA catalog.
 - Miscellaneous fittings and tubing were ordered from McMaster-Carr and Grainger.
- Hardware was chosen based on our calculations, research, and recommendations.

Forces on bike

- $F_D = Drag$
- $F_R = Rolling resistance$
- $F_B = Backforce$
- $F_P = Propulsion force$
- $F_N = Normal force$

•
$$a = \frac{F_P - F_D - F_B - F_R}{m}$$

Free body diagram

Pump & Motor Sizing

- Human Input
 - 80 rpm
 - 221 In-lbs.
- Gear Ratio
 - 5:1
- Assumed Pressure
 - 1500 psi

$$T_{P} = T_{H} \frac{d_{P}}{d_{H}} = \frac{T_{H}}{GR} = 44.2[in - lbs]$$

$$\omega_P = \omega_H \frac{d_H}{d_P} = \omega_H \times GR = 400[rpm]$$

$$Disp_{P} = \frac{2\pi T_{P}}{\eta_{P} p_{P}} = 0.21 \left[in^{3} / rev \right]$$

$$Q = \frac{p_P \times \omega_P}{231} = 0.32 [gpm]$$

MGG20010 – 0.218 CID Pump

- Assumed Losses
 - 200 psi
- Required Torque
 90 in-lbs.

$$Disp_{M} = \frac{2\pi T_{M}}{\eta_{M} p_{M}} = 0.54 \left[in^{3} / rev \right]$$

0.54 CID Eaton Gear Motor

Accumulator Sizing

- 1 Quart Volume
 - Size Constraints
- 1500 psi Nitrogen Precharge Assumed
- 3000 psi Oil Charge
 Assumed

$$V_{N_2} = V_{N_1} \frac{P_{N_1}}{P_{N_2}} = 0.803[L] \frac{1014.7[psia]}{3014.7[psia]} = 0.2703[L]$$

 $V_o = V_{Tot} - V_N = 0.6757[L]$

Velocity profile of vehicle during accumulator discharge

Electronic Circuit

Display Circuit

Control & Logic Circuit

Control & Logic Flowchart

Incorporation of analyses - Fluid Power **Simscape Fluids**

Motor and Pump

Pump Subsystem

Motor Subsystem

Power

Results

Comparison of both variants

configuration	Max. principal stress in psi	Max. von Mises stress in psi	Max. deformation in inch	Weight in Ibs.	Safety factor
Mount without holes	19 430	12 666	0.0028	1	1.8
Mount with holes	22 574	15 917	0.0036	0.7	1.6

Pump mount

Manifold Mount

Accumulator Mount

- 3D Printed
 - Nylon 12CF

Component	Max Stress (psi)	Safety Factor	Max Deformation (in)
Bottom Mount	1687.8	2.47	0.0138
Bottom Mount	2289.3	1.82	0.00194
Сар			
Top Mount	2364.3	1.76	0.0044
Top Mount Cap	2709.2	1.54	0.0064

Accumulator Mount Bottom Bracket and Cap

Accumulator Mount Top Bracket and Cap

Accumulator Mount

Electronics Box

- 3D Printed
 - Box
 - ABS-ESD7
 - Supporting Arm
 - Nylon 12CF

Electronics Box

Electronics Box

Pneumatics

Adjustable seat suspension

Watch our suspension motion study: <u>https://www.youtube.com/watch?v=wtpmAJPt04g</u>

FEA Simulated Results

Pneumatic Seat Suspension Circuit

Calculations for Component Selection

Pneumatic Cylinder

- Allowed pressure: 100 psi
- Assumed weight: 215 lbs.
- Cylinder Bore: 2 in
- Stroke: 4 in

Pneumatic Tank

- Required pressure: 88.05 psi
- Remaining pressure after one stroke: 90.889 psi

Vehicle Construction – Motor Chain

Vehicle Construction – Pump Chain

Vehicle Construction – Hydraulic Oil Reservoir

Vehicle Construction -Tubing

Vehicle Construction -Tubing

Vehicle Construction – Pneumatic Seat Suspension

- COVID-19 interrupted manufacturing
- Requires machine shop

Vehicle Assembly – Before Tubing

Progress Made Towards Final Vehicle

Lessons Learned

 Machine sprockets to fit on key shaft of motor and pump and also on a normal bike chain

Lessons Learned – Bottom Bracket

- Old bracket was rusted
- Many different standards
- Outdated 'RALEIGH'

Lessons Learned - Chain

Lessons Learned – Hub Gear

Lessons Learned

- Being flexible, adapt to unpredictable situations
- Working in a team to overcome obstacles
- Something will go wrong
- Sometimes you just have to get started learning on the fly

Conclusion

- Design Goals Achieved
 - Clean and Safe Design
 - Pneumatics Incorporated into Design
 - Electrically Controlled Hydraulic Valves in Design
- Possible Improvements
 - Exchange rear wheel fixed sprocket for hub gear
 - Orientation of tubing/manifold ports

Thank you!

We want to especially thank:

- Dr. Luis A. Rodriguez
- NFPA
- Mike Helbig, Eric Holland, Matthew Loeffler (Force America)
- Todd Frandsen and Kent Sowatzke (Bimba)
- Jeff McCarthy (SunSource)
- Terry McCart, Tim Kerrigan (FPI)
- Jordan Weston, Kazi Rafizullah (MSOE RPC)