

PURDUE UNIVERSITY NORTHWEST

NFPA Education and Technology Foundation TEAM ADVISOR: ALI ALAVIZADEH, RICK RICKERSON

Industrial Mentor: LAKHWINDER SINGH, RICK GUIDISH **PURDUE** UNIVERSITY NORTHWEST.

APRIL 17, 2020

Team Photo

Figure 1. Team Photo. Hammond IN. 2020

Team Members Left to Right. Brian Long, Daniel Kwak, Christian Miller, Sean Slouber, Alireza Alavizadeh

Problem Statement

 Create a vehicle that combines human power and fluid power in order to compete against other schools while promoting/spreading the importance of fluid power in our daily life.

Key Changes Since Midway Review

- Switched from the Quad Design to a Tricycle design
- Traditional peddling rather than elliptical
- Added more to the Electrical Circuit
- Complete redesign on frame and steering system

Midway Review Designs

Figure 2. Midway Review Frame. SolidWorks 2020.

Figure 3. Midway Review FOS. SolidWorks 2020.

Figure 4. Midway Review Displacement. SolidWorks 2020.

Figure 5. Midway Review Electrical Circuit. SolidWorks 2020.

Figure 6. Midway Review Hydraulic Schematic. Automation Studios. 2020

Vehicle Frame BOM & Budget

Budget= \$1300

Part name	Link/ distributor	Price
Docol R8 steel	A.E.D	\$253.80
Bike rims	Top LowRider	\$160.00
Tires	Trek	\$50.00
Handlebars	Top LowRider	\$39.99
Rear Axle	Top LowRider	\$199.99
Front Fork	Top LowRider	\$54.99
Front Brake	Top LowRider	\$34.99
Brake Levers	Brake Lever	\$9.99
Rear Rims	Top Lowrider	\$119.98
Fasteners		\$200.00
	Bryan's Auto	
Paint/ Body	Rebuilders	\$175.00
	Total:	\$1,298.73
	Remainder/ over	\$1.27

Table 1. Vehicle Frame BOM & Budget. Google Sheets. 2020

Frame Analysis

Figure 7. Frame Stress Analysis. Maximum Stress= 14.06 ksi. SolidWorks 2020

Figure 8. Frame Displacement Analysis. Maximum Deformation= 0.041 in. SolidWorks 2020

Figure 9. Frame Factor of Safety Analysis. FOS=4.746. SolidWorks 2020

Tubing

Figure 10. Docol vs. Chrome Moly Graph. Peter Falk. 2020

Vehicle Calculations

Wheel Diameter	24in	Axle Sprocket 1	14 T
Desired Speed	15mph	Axle Sprocket 2	16 T
Pump Displacement	0.763CID	Axle Sprocket 3	18 T
Motor Displacement	0.61CID	Axle Sprocket 4	20 T
Required Torque	100 in*lb	Axle Sprocket 5	22 T
Input RPM	65RPM	Axle Sprocket 6	24 T
Driving Sprocket	42 T	Axle Sprocket 7	28 T
Driven Sprocket	13 T	Motor Sprocket	16 T

Table 3. Givens/ Assumptions for Calculations. Google Sheets. 2020

Vehicle:		Equations		
RPM	210.0	(336*MPH)/(Wheel Dia.)		

Table 4. Vehicle Calculations. Google Sheets. 2020

Pump:		Equations	
Theoretical GPM Pump	0.7	(CIR*RPM)/(231)	
Theoretical PSI Pump	823.5	((in*lb)*2pi)/(CID)	
Theoretical Pump HP	0.3	(Theoretical GPM*1000)/1714	
Theoretical RPM Pump	210.0	(GPM*231)/(CID)	

Table 5. Pump Calculations. Google Sheets. 2020

Vehicle Calculations

Motor:		Equations	
Theoretical RPM Motor	262.7	(GPM*231)/(CID)	
Theoretical Torque Motor	789.1	(CID*PSI)/(2pi)	
Theoretical Motor HP	0.4	(Theoretical Torque*Theoretical RPM)/63025	

Table 6. Motor Calculations. Google Sheets. 2020

Motor Sprocket Ratios		atios	Equations
Number of Teeth		Gear Ratio	
14		0.9	T2/T1
16		1.0	T2/T1
18		1.1	T2/T1
20		1.3	T2/T1
22		1.4	T2/T1
24		1.5	T2/T1
28		1.8	T2/T1

Table 7. Motor Sprocket Ratios. Google Sheets. 2020

Speed in Different Gears		Equations
Number of Teeth	Actual Speed (MPH)	Desired Speed*Gear Sprocket Gear Ratio
14	13.1	Desired Speed*Gear Sprocket Gear Ratio
16	15.0	Desired Speed*Gear Sprocket Gear Ratio
18	16.9	Desired Speed*Gear Sprocket Gear Ratio
20	18.8	Desired Speed*Gear Sprocket Gear Ratio
22	20.6	Desired Speed*Gear Sprocket Gear Ratio
24	22.5	Desired Speed*Gear Sprocket Gear Ratio
28	26.3	Desired Speed*Gear Sprocket Gear Ratio

Equations from Parker, E (2017)

Table 8. Speed in Different Gears Calculations. Google Sheets. 2020

Hydraulic BOM & Budget

Budget= \$2,535.00

Part name	Manufacturer	Part/ model Number	Price	Quantity	Total
2/2 Solenoid	Eaton	SBV1-10-C-0-00	\$72.00	3	\$216.00
2/3 solenoid	Deltrol	DSV2-100-3B-N	\$41.00	1	\$41.00
Coil, Series 10	Deltrol	10162-91	\$40.00	1	\$40.00
Pressure Gauge	Seal fast	118AL25N4P5000	\$27.00	1	\$27.00
Check Valves (cartridge insert)	Deltrol	DCV-080-PB	\$30.00	2	\$60.00
Check Valves (in line)	Deltrol	EDC30SS	\$30.00	1	\$30.00
Pressure Relief Valve	Deltrol	DDRV-080	\$45.00	1	\$45.00
Hand Pump, .5 CID	Deltrol	DHP-100	\$80.00	1	\$80.00
Accumulator (1 Gal.)	Steelhead	AB30CN010G0N	\$810.00	1	\$810.00
Pump	Cassapa	26002-LZG	\$310.00	1	\$310.00
Motor	Cassapa	26702-DAB	\$375.00	1	\$375.00
Fittings	Eaton		\$200.00	1	\$200.00
Hoses	Ryco		\$300.00	1	\$300.00
			Total: Remainder/ Over:		\$2,534.00
					\$1.00

Hydraulic Circuit

Figure 11. Hydraulic Circuit. Automation Studio. 2020.

Direct Drive Circuit

Figure 12. Direct Drive Hydraulic Circuit. Automation Studio. 2020.

Charging Circuit

Figure 13. Charging Hydraulic Circuit. Automation Studio. 2020.

Regenerative Braking

Figure 14. Regenerative Braking Hydraulic Circuit. Automation Studio. 2020.

Discharge Circuit

Figure 15. Discharge Hydraulic Circuit. Automation Studio. 2020.

Electrical BOM & Budget

Budget= \$565.00

Electrical Budget							
Part name	Manufacturer	Part/ model Number	Price	Quantity	Total		
12V 7Ah Batteries (Set of 2)	Razor	6-DW-7	\$85.92	1	\$85.92		
PLC	Click	CO-12DD2E-2-D	\$187.00	1	\$187.00		
HMI	C-more	EA9-T7CL-R	\$282.00	1	\$282.00		
Pressure Transducer	Cooper	Ptg-402-a-5000-p-3-d-0	\$49.99	2	\$99.98		
24V Solenoid Coil (J-type)	Eaton	300AA00082A	\$25.00	2	\$50.00		
24V Solenoid Coil (H-type)	Eaton	300AA00122A	\$32.00	1	\$32.00		
24V Solenoid Coil	Deltrol	10162-77	\$40.00	1	\$40		
4-Channel Pluggable Power Relay Module w/ 24V Omron G2R-1-E Relays	Electronics-Salon	D-210	\$60.00	1	\$60.00		
DIN Rail	ROHS	D357A11-305	\$5.29	1	\$5.29		
Push Buttons	Keenso	Lqwmutgi-03	\$28.19	1	\$28.19		
Inline Fuse Holders w/ Glass Fuses	Dorman	B07F8RLMPB	\$12.00	1	\$12.00		
12V LED Light Strip	Dainolite	CUTLED_ODRGB	\$14.16	1	\$14.16		
			Total:		\$896.54		
			Budget:		\$565.00		
			Remaind	er/ Over:	-\$331.54		

Table 9. Electrical BOM & Budget. Google Sheets 2020.

Electrical Circuit

PLC Program

Figure 17. Ladder Logic Program Part 1. Click Programming Software. 2020

PLC Program

Reset

THE TIMO

Timer/Counter

Figure 18. Ladder Logic Program Part 2. Click Programming Software. 2020

3

Address Picker

JEdit Dung Commonte

HMI Screen

Figure 19. HMI Display Screen. C-more Programming Software. 2020

Build Process

Figure 20. Frame Sketch. SolidWorks 2020

Figure 23. Model Assembly. SolidWorks 2020

Figure 21. Frame Welding. Hammond IN. 2020

Figure 22. Final Welding. Hammond IN. 2020

Figure 24. Frame Finish Welding. Hammond IN. 2020

Build Process

Figure 25. 3D Printed Parts. Hammond IN. 2020

Figure 28. Tubing for Hydraulic Circuit by Hose Connections. Hammond, IN, 2020

Figure 26. HMI On Bike. Oak Forest IL. 2020

Figure 29. Vehicle in Paint. Chicago Heights. 2020

Figure 27. Finished Vehicle at Night. Oak Forest IL. 2020

Key Features

Figure 31. Key Components. Hammond IN. 2020

Figure 32. Frame to axle mounts. Oak Forest IL. 2020

Figure 33. Bottom Mounting Plate. SolidWorks 2020.

Figure 34. Bottom Mounting Plate Assembly. SolidWorks 2020.

Figure 35. Pump & Motor Mounts. Hammond IN. 2020

Figure 30. Inside Ebox . Oak Forest IL. 2020

Finished Vehicle

Figure 36. Finished Vehicle. Oak Forest IL. 2020

Video 2. Discharge Circuit. Oak Forest IL 2020.

Test Results

- Approx. ¹/₄ mile from 3000psi discharge
- Top speed approx. 17mph
- Final weight is unknown. Approx. 125lbs.

Figure 37. Hose Connections Logo. HoseConnections.com . 2020

Figure 41. IRG logo. IRG.com. 2020

Figure 38. PNW BAJA Motorsports. Instagram. 2020

BRYAN'S AUTO REBUILDER'S AND LPFAB

Figure 39. Deltrol Fluid Product Logos. Deltrol.com. 2020

Figure 40. Bryan's Auto Rebuilder's Logo. Bryansautorebuilders.com. 2020

Lessons Learned

- Contingency plans are necessary
- Outside help is a key to success
- Revisions are important throughout the build process

Bibliography

- Parker, E. (2017). Hydraulic Specialist Certification Review. Bloomington, MN: Hydra Tech Inc.
- Peter Falk, J. L. (2020). Comparison Report: Docol R8 vs 4130 Chrome Moly. From AED Metal Products and Supplies: https://www.aedmotorsport.com/resources/comparison-report-docol-r8-vs-4130-chrome-moly