

NFPA Education and Technology Foundation FINAL PRESENTATION PURDUE UNIVERSITY Dr. Jose Garcia-Bravo April 15, 2020

Agenda

- Project Importance
- Hydraulic Drivetrain Design
- Sizing of Hydraulics
- Electronic Control System
- Pneumatic Design
- Frame Design
- Vehicle Construction
- Lessons Learned

Team Members

Alec Watkins

Nick Moss

Ilyas Yilgor

Nicholas Formica

Technical Advisor

Dr. Jose Garcia-Bravo

Project Importance

- Gain first-hand experience with hydraulic systems and components
- Learn to design in a manufacturing environment
- Use CAD software for conceptual design
- Understand all phases of the design process
- Test and diagnose hydraulic and mechanical issues
- Work together as a diverse team

Summary of Last Semester's Progress Fluid Power

	Weight	Handling	Cost	Customizable	Strength	Appearance	Safety	Total Score
Scores	0.15	0.05	0.05	0.2	0.2	0.1	0.25	1
Classic 2-Wheel	3	2	3	2	2	2	2	
	0.45	0.1	0.15	0.4	0.4	0.2	0.5	2.2
Recumbent Trike	2	3	2	4	4	3	4	
	0.3	0.15	0.1	0.8	0.8	0.3	1	3.45
Four Wheeler	1	4	1	3	3	1	3	
	0.15	0.2	0.05	0.6	0.6	0.1	0.75	2.45
Elliptigo	4	1	4	1	1	4	1	
	0.6	0.05	0.2	0.2	0.2	0.4	0.25	1.9

- CAD partially done
- Most of Hydraulic Parts ordered
- FEA and AMESIM analysis
- Hydraulic Circuit Completed
- Overestimated a rider of 100 kg, with weight distributed uniformly along the seat.
- Static FOS of 5
- Fatigue FOS for 300 km of 2.4

Poisson's Ratio (ν)	0.33
Young's Modulus (E)	68.9 GPa
Tensile Yield Stress (σ_y)	276 MPa
Ultimate Tensile Stress (σ_{ut})	310 MPa

Table 1: Material properties used for 6061 aluminum [1].

Final Hydraulic System Design

Modes	DCV1	DCV2
Charging	on	off
Pedaling	off	on
Boosting	on	on
Regeneration	off	off

Charging Mode

Pedaling Mode

Boosting Mode

Regeneration Mode

Simulation Results

Manifold Design

-Team to procure all BOM items listed seperately

-Team to install all BOM items

SAE

O-RING

#8 SAE

Item	Qty	Model Code	Description	Manufacturer
1	1	FV-13436-M1	Manifold body, aluminum	SunSource
2	2	SBV1-10-C-0-00	Solenoid 2 pos. 2 way	Eaton
3	1	D1620-01-06SAE	Test Point Fitting, M16 x 2	Dynamic
4	3	RV1-10-S-0-30	Relief Direct Acting	Eaton
5	1	CV3-8-P-0-004	Check 1-2, 4 PSI Spring	Eaton
6	2	300AA00081A	Coil 12VDC, DIN	Eaton

			SUNSOURC	E
	Creation Date 1/2/2020	Drawn By J. McCarthy	Customer Name Purdue	
	Material Aluminum	Print Checked By D. Rikala	Title NFPA FPVC 19-20	
	Protective Finish None	Sheet Name Sheet 1 of 1	Part Number FV-13436-V1 schem	
sz B	Dimensions are in inches. Do notscale drawing, Unless Otherwise Specified, apply STS Standards per DWG PV- 1000- Specifi	Third Angle Projection	Proprietary and Confidential SunSource claims proprietary rights on the information disclosed on this drawing. It is issued in confidence and may not be reproduced or used to manufacture anything aboven herevolved dract within permission from SunSource to the user	Rev A

JIC-6 fittings used whenever possible

Thank you SunSource

Sizing of Hydraulic Components

- Relief Valves: 200 bar cracking pressure to maximize vehicle performance/boosting; 210 bar manifold limit
- Accumulator: 1 gallon due to competition constraints and 30 bar precharge based on Amesim simulations
- Motor sized to be as small as possible (6.6 cc/rev) based on equation: $n = \frac{Q_{actual} \cdot e_{volumetric}}{V}$
- Regeneration pump sized to be 6.6 cc/rev based on equation: $T = V_m \cdot \Delta P_m$
- Tank volume sized to be 2 gallons based on calculations:

 $V_{tank} = FS \cdot V_{sys,max} \cong FS \cdot (V_{accum,max} + L \cdot \frac{\pi}{4} \cdot D^2) = 2 \cdot (0.793 + 0.133) \text{gal.} \cong 2\text{gal.}$

Hydraulic Design - Components Fluid Power

Description	Manufacturer	Part Number	Install in Line Body Part Number:
Gear Motor, 0.43 CID, Keyed Shaft, .625" SAE A mount, CW rotation, external case drain. Code: ADMAR01AMA01AD000000B0A	Eaton	26701-RSC	
Pump, Lever Operated, Push to pump, .601 CID	Doering	241871-S	876700
Gear Pump, 0.4 CID, 9 tooth spline SAE A mount, CW rotation. Code: ACNAR01AAA0030000000000A	Eaton	26001-RZJ	
Pump Handle, Doering	Doering	241016	
Relief, Direct Acting	Eaton	RV1-10-S-0-30	876700
Check, 1 to 2	Eaton	CV3-8-P-0-004	02-160731
Solenoid, 2 pos. 2 way Bi-poppet, normally Closed	Eaton	SBV1-10-C-0-00	876700

Hydraulic Components

Motor Displacement: 6.6 cc/rev

Regeneration Pump Displacement: 6.6 cc/rev

Hand Pump

Hydraulic Components

Two gallon Tank Accumulator

Electrical System Design

Circuit Parameters:

- Battery: IMax = 12A;
 V = 12VDC
- Clutch: I = 0.322A; V = 24V
- DCV 1&2: I = 1.92A;
 V = 12V
- Max Switch Current: 6A
- Max Wire (18 awg) Current: 7.0A
- IN5404 Diodes: Imax = 200A

Modes	DCV1	DCV2
Charging	on	off
Pedaling	off	on
Boosting	on	on
Regeneration	off	off

Prototype Testing - Electrical System

- Male & Female Quick Disconnect (single, 22-18 AWG)
- Metric Stranded Wire (18 AWG, Blue, 50 ft)
- Li-Ion Battery (12V, 9Ah, Quick Disconnect Tab)
- Charger for 12V Large-Cell Battery
- UL Class RK5 Fuse (5A, 250V AC/125V DC)
- UL Class RK5 Fuse (1A, 250V AC/125V DC)
- Fuse Block (for 3 RK1 & RK5 1-30A, 250V DC)
- WAGO Lever Nuts used as Electrical Nodes

Final Electrical System

- All components secured inside IP65 box
- Superglued nodes and fuse boxes
- Put electrical tape on diodes
- Grommets to protect wire and epoxy to waterproof grommet holes
- Desired value actuation achieved
- Still needed to mount switches onto plate/box near handlebars & secure battery inside another box

Pneumatic Design

Pneumatic Seat Adjustment

- 6 inch stroke with 1.25 inch bore size.
- Max system psi of 100 with pressure regulator
- Hand pump to compress air into tank
- Mechanical switch near the seat.
- Adjust orifice size to change speed of recline
- 30 degrees of seat adjustment.

Thank you! IMI/BIMBA²¹

Pneumatic Design

$$t = V (p_1 - p_2) / C p_a$$

t = Time	t - 11 61 cycles
V = Volume of Tank	V = 1.23 cubic inch
$p_1 = Maximum Pressure$	<i>p</i> ₁ = 100 psi
p_2 = Minimum Pressure	<i>p</i> ₂ = 14.7 psi
C = Free air needed	C = .613 cubic
p_a = Atmospheric Pressure	inch/extension
	<i>p_a</i> = 14.7 psi

- 0.613 cubic inch represents the volume of inside cylinder at max extension
- Since it is not continuous flow, t can be replaced with the number of max extensions.
- Loses air during valve switch, less cycles than expected

Mechanical Components

Main Frame

- 5 aluminum 6061 tubings welded together
- Flange to mount electric clutch for regeneration purposes.
- Has pin holes and tighteners for the telescopic extension.
- Provides just enough space for hydraulic components.

Specifications

- 20" wheel size
- Weighs around 40 kg (90 lbs)
- Total vehicle length adjustable from 4 7.5 ft
- Two shafts, one for driving, one for regeneration, allows very tight turning radius and increased safety compared to a live axle
- "Delta" design offers higher ground clearance and increased maneuverability compared to standard tadpole
- Used vibration damping U-bolts to connect the seat and foot pumps
- 5 gear reduction from motor to drive shaft, 6 gear reduction from regen shaft to regen pump
- Memory foam padding on the seat
- Pneumatic seat adjustment

Drive System

Steering

Gear Shifting

- Shimano Alfine Di2 Electronic Gear Shift
 - 306% gear ratio
 - Normally used as a hub within the rear wheel of a bicycle, we modified it such that a sprocket is connected to 6 spoke holes to drive the drive shaft.
 - The smaller manufacturer sprocket is driven by the hydraulic motor. Hydraulic motor sprocket was machined down to fit a bicycle chain.

Assembly Process of Vehicle

Assembly Process of Vehicle

Assembled Vehicle

Lessons Learned

- Have drawings printed and labeled before fabricating
- Have a more systematic approach to design process
- Working around bottlenecks
- Importance of modeling in design
- Correct fittings for hydraulics and pneumatics

References

- 1. SAE Surface Vehicle Standard J744
- 2. Aluminum Tubing Standard ASTM B221-14
- 3. Involute Splines, Serrations, and Inspection SAE J498b
- 4. Cycle Safety and Testing ISO 4210
- 5. Cycle Rims ISO 5775
- 6. Stem Angle ISO 8562:1990
- 7. Chains and Testing Methods ISO 9633:2001