

FINAL PRESENTATION
Michigan Technological University
David Wanless
4/10/2020

Team Introduction

Mentors: Courtney Castelic & Cedrick Barber

Team Advisor: David Wanless

Team Members: Jay Kintner

Will Norton

Chandler Zent

Eric Pederson

Design Objectives

- Create a quick, efficient, and reliable vehicle with fluid power.
 - > Speed
 - Target: 7Mph
 - > Efficiency
 - **35%**
 - Reliability
 - No Leaks
 - No Breakdowns
 - Of Obvious Quality

Midway Summary

- Initial Bike Design
 - Lacking valves and brackets
 - Unconfirmed component geometry
 - Presentation of general idea

Midway Summary cont.

- Initial circuit
 - Front wheel regeneration
 - Lack of valves

- Final circuit
 - Use of valves
 - Front wheel ignored
 - Use of manifold

Midway Summary cont.

Results of Analysis

$Torque = \frac{Hp * 5252}{RPM}$	$Torque = \frac{0.25 * 5252}{70} = 18.76Ft * Lbs.$ = 225 In * Lbs.
$MPH = \frac{Wheel\ Diameter\ *RPM}{336}$	$MPH = \frac{27 * 70}{336} = 5.625 MPH$
$Displacement = \frac{Torque * 2\pi}{Pressure(psi)}$	Displacement = $\frac{225 * 2\pi}{2900} = 0.48 In^3$
$GPM = \frac{RPM * Displacement}{231}$	$GPM = \frac{70 * 0.48}{231} = 0.145 \ GPM$

Midway Summary cont.

Fluid Power VEHICLE Challenge

Selection of hardware

- Once we found our displacement and flow rate requirements, we were able to start picking parts.
- We designed our bike with the Parker P1 series piston pump that fit near our design requirements
- We ended up choosing a gear motor and a gear pump from the order form that fit our design specifications.
- Hoses are to all be of 3/8" size with -6 JIC male ends.
- Additional hardware was ordered separately.

Vehicle Construction

- Started with an existing frame
- Rapid prototyping
 - using models of the pump, motor and accumulator to model mounting brackets
 - > 3D printed the manifold to help with laying out the frame
- Began machining parts

Driving the Pump

- Chain and sprockets to drive the pump
 - > 2:1 sprocket ratio
 - Keyed and threaded sleeve on pump shaft

Driving the Pump Cont'd

- Freewheel clutch bearing on the pump
 - Driven one way and allows for coasting
 - Freewheels when shaft moves faster than sprocket
 - Still regenerates from motor to accumulator

Driving the Rear Axle

- Spur gears to drive the rear axle
 - 3 inch, 72-tooth spur gears
 - > 1:1 gear ratio
 - Internally threaded sleeve on axle to attach gear

Lessons Learned

- First year participating in the competition gave the team a steep learning curve to overcome.
- When we came to certain hydraulic fundamentals, we had to research and teach ourselves some of the theory
- Utilizing 3D printers to effectively prototype mounting brackets and other parts
- Using Automation Studio to model and improve our circuit design

Problems Overcame

- Our accumulator size and weight was larger than expected and we had to account for this
- Not having an in-depth background in hydraulics
- Not building a custom bike frame and having to find a bike that fit our needs

Questions?

