

NFPA Education and Technology Foundation FINAL PRESENTATION KENNESAW STATE UNIVERSITY DRS. RUHALA April 15, 2021

Outline

- Introduction
 - Team Members
 - Team Advisors
- Design Objectives and Goals
- Summary of Midway
 - Vehicle Frame
 - Early Analyses Results
 - Hardware Selection and Schematics
 - Hydraulics
 - Pneumatics
- Pneumatic Changes
- Electronics
- Analyses
- Vehicle Construction and Assembly
- Vehicle Testing
- Final Vehicle
- Lessons Learned
- Conclusion
- Acknowledgements

Introduction

- Senior design capstone project team, not an NFPA club.
- We are new to hydraulics, with only the required fluids class as our reference.
- None of our faculty focus on Fluid Power, our advisors have different focuses.
- 2nd KSU team to try this, after the 2018-2019 team.

Team Members

Romeo Locke (PM) Senior – BSME

Will Sanders Senior – BSME

Sahil Pitre Senior – BSME

Kevin Wandene Senior – BSME

Team Advisors

Laura Ruhala Ph.D.

Team Advisor Associate Professor Kennesaw State University

Richard Ruhala Ph.D.

Team Advisor Professor Kennesaw State University

Kevin Lingenfelter Engineering Manager Danfoss Power Solutions KSU Mentor

Design Objectives

- Design must meet the constraints of the FPVC
 - Hydraulic and Human Powered
 - Pneumatics and Regenerative Braking Required
- The vehicle must be able to compete in and complete 3 events
 - Sprint, Endurance, and Efficiency challenges.
- Design a safer and more stable vehicle
 Compared to provious KSU EDVC Team
 - Compared to previous KSU FPVC Team.
- Remain under the assigned FPVC budget
 - Only competition funds are provided.

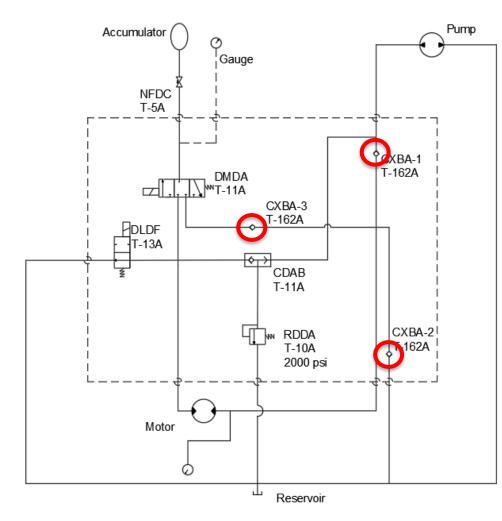
Design Goals

- **Safety** of rider, builders and others.
- **Durability** ability to endure multiple test rides and competition events.
- **Reliability** no breakdowns or leaks.
- **Stability** especially for slalom course, and when stopped, increases safety.
- Weight savings— light bike, light materials, light rider.
 160 lbs. without hydraulic fluid
- **Simplicity** aiming for simple, efficient & easy to maintain design.

Summary of Midway Vehicle Frame - Selection

Tricycle (2 rear wheels)

Summary of Midway Vehicle Frame - Assembly



Early Analyses Results

- Hydraulics
 - .513 CID pump and .513 CID motor
- Pneumatics
 - We wanted a 7/8 in bore size at 30 psi with
 a 3/8 in rod diameter.

Hydraulic Schematic

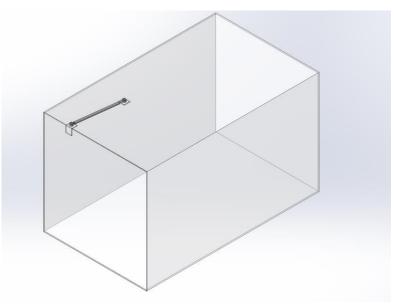
Bill of Materials	
Pressure Relief valve	1
Needle valve	1
3 pos 3-way 24V sol valve	1
2 pos 2-way 24V sol vale	1
Check valve	3
Shuttle valve	1
Pump (.513 CID)	1
Motor (.513 CID)	1
Accumulator (1 gal)	1
Reservoir (Self made)	1

Component Selection- Hydraulics

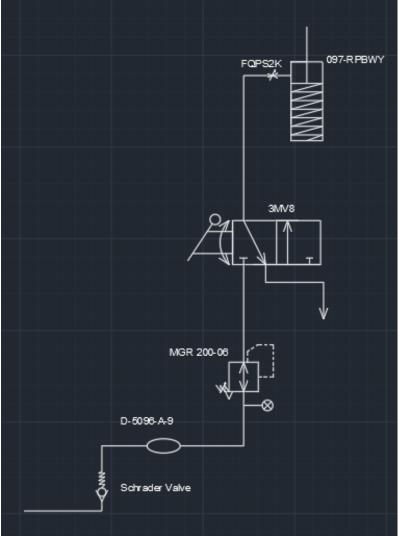
Danfoss Gear Pump

Traditional Trike

Danfoss Gear Motor



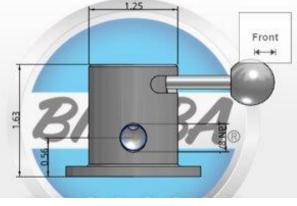
d Power


Fluid Power VEHICLE Challenge

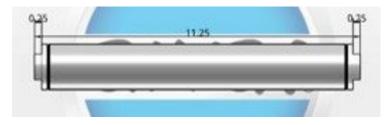
Pneumatic Objective

- Objective
 - Keep a door closed using pneumatic pressure and have spring open door when necessary.

Pneumatic Schematic



Summary of Midway Component Selection – Pneumatics



Air Cylinder

Valves

Shrader Valve

Air reservoir

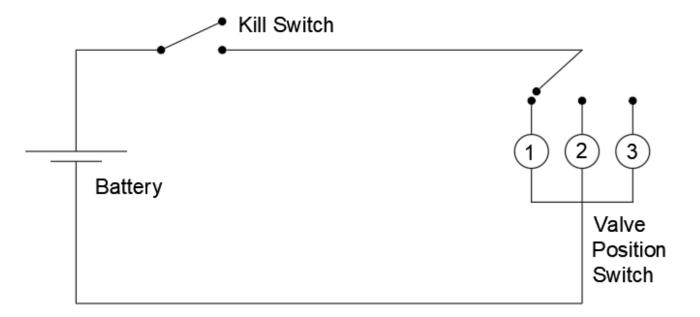
Component Selection – Pneumatics

Regulator

Cylinder mounting

Flow Control

Rod Mounting


Pnuematic Changes

- Actuator
 - Before: 7/8 in bore size and 3/8 in diameter rod @ 30 psi
 - After: Power factor of 09 & 7 inch stroke @ 20 psi
- Reservoir
 - Before: Was not measured.
 - After: 9 inch and 1.5 inch diameter

Electronic Circuit Schematic

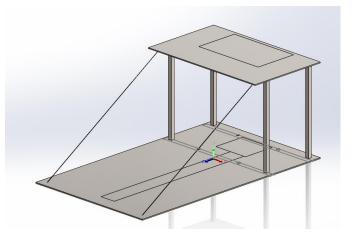
1 = Valve 1 Activated 2 = No Valves Activated 3 = Valve 2 Activated

Electronic Selection

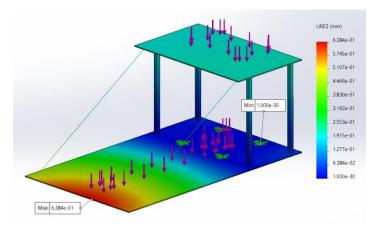
3-way switch ON-OFF-ON

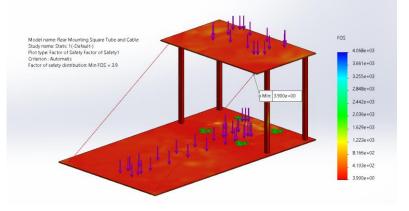
Spade connectors

Battery


Analyses

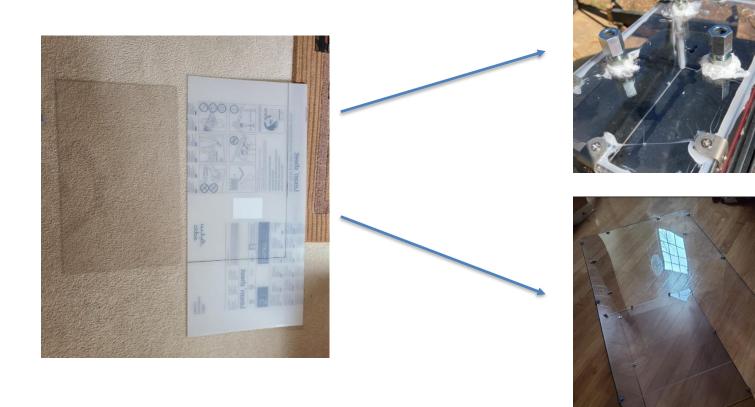
Sub - Assembly	Component	Hand Calculations	CAE (Computer Aided Engineering)	Completed Analysis
Fluid power schematic	Fluid power Schematic		Hopsan	\checkmark
Hydraulic Components	Motor	Sizing calculations		\checkmark
Tryuraulic components	Pump	Sizing calculations		\checkmark
Pneumatic Components	Air Cylinder & Reservoir	Sizing Calculations		\checkmark
	Vehicle with components		CFD	Х
Vehicle	Gear train	Gear Ratios		\checkmark
	Frame		FEA	х
	Mounts		FEA	\checkmark
Fluid power schematic & Vehicle	Both Subassemblies		Simscape™	Х


Analyses -Mounting Manifold



We were originally going to use ¼" steel plate.

After CAE, found that 1/8" steel plate would still work, while providing weight savings of **26.4 lbs.**



Vehicle Construction & Assembly

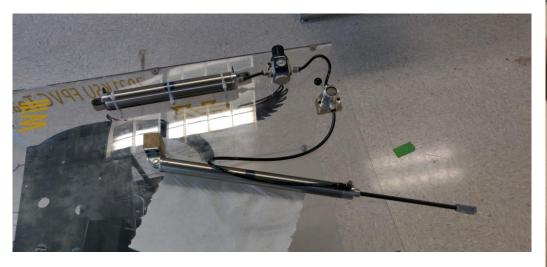
Polycarbonate shielding and reservoir

Vehicle Construction & Assembly

• Hose routing

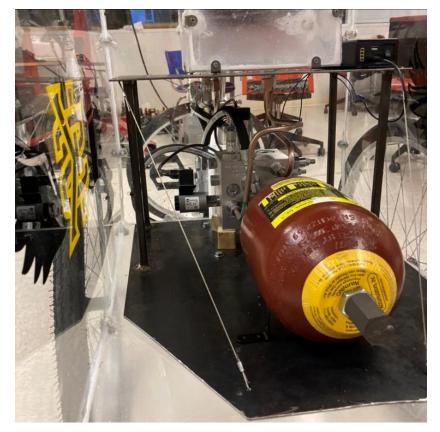
Vehicle Construction & Assembly

Sheet metal



Vehicle Construction & Assembly

Pneumatics



Vehicle Construction & Assembly

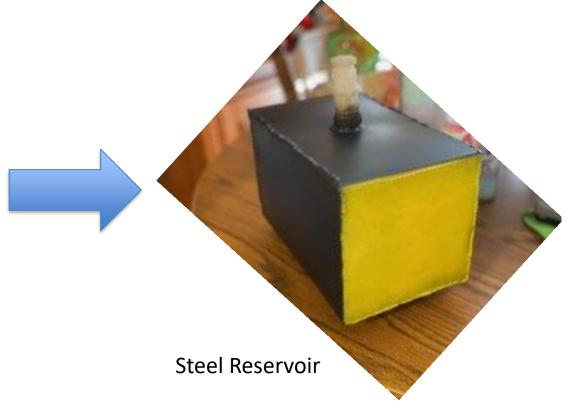
• Putting it all together!

Vehicle Construction & Assembly

• Putting it all together! (cont.)

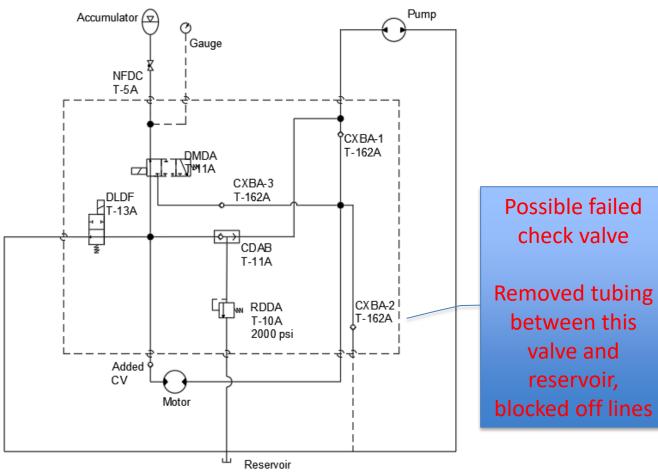


- Regenerative Braking
 - Bike free wheel does not allow regenerative braking by coasting, as was intended.
 - Left circuit unchanged because regenerative braking was achievable by pedaling pump.
- Hose Lengths
 - Most of the hoses were too short by a hair.
 - 90° Fittings were bought.


- Direct Drive
 - Pressure in motor exceeded pressure relief valve minimum, redirecting fluid to reservoir
 - Tuned pressure relief valve to maximum (2000 psi) to allow motor to turn

- Plastic reservoir
 - Sealant sprung a leak
 - Replaced with steel reservoir

Polycarbonate Reservoir


- Back pressure on the motor
 - Prevent any back pressure that would spin the motor backwards as we drained the accumulator in boost mode.
- Added check valve to prevent this.

Revised Hydraulic Schematic

Boost

- Check valve was allowing fluid to go to the reservoir before going through motor
- Line was capped off because theoretical regen erative braking was unachievable

Vehicle Testing Pneumatics

- Goal
 - Controlled door opening.
 - Door maintains closed over long period of time.

Tuning

- Reservoir: > 60 psi
- Regulator: 25 psi
- Flow control: nearly closed.
- Results
 - Door Opening: 3 seconds.
 - Door Closed: > 30 minutes.

Vehicle Testing Mechanical

Wheel Problem

Vehicle Testing Mechanical

Chain tensioning

Final Vehicle

Lessons Learned

- Start manufacturing early. This is very important.
- Test complete bike as early as possible to find possible issues or improvements.
- Plan out everything ahead of time e.g., knowing where to pre-charge if you do not have the equipment for it.

Conclusion

- Very good learning experience.
 From very little hydraulic knowledge to working bike in ~ 7 months.
- Value of teamwork & goal-setting.
- Gained pneumatic, electrical, hydraulic, tool, and simulation experience.
- Met goals of both class and competition, simultaneously.

Acknowledgements

- Phillip Sanders
- Ernie Parker
- Stephanie Scaccianoce
- Josh Scarbrough
- Kent Sowatzke

QUESTIONS?