

NFPA Education and Technology Foundation Final Presentation Premature Cavitation Milwaukee School of Engineering Luis A. Rodriguez April 16, 2021

Team Introduction

Left to Right: Caleb Hummel, James Martin, Zachary Burrell, Riley Jones, Luis A. Rodriguez, Nathan Togstad, Yazdegard Daruwalla

Problem Statement

 Design a human powered vehicle which utilizes electro-hydraulic and electropneumatic technology to convert the rider's input into propulsion to compete in sprint, endurance and efficiency competitions while weighing under 210 pounds, allowing for a single rider to enter and exit without assistance, functioning safely, and implementing regenerative braking.

Objectives

- Vehicle designed to participate in all 3 competitions (Sprint race, Efficiency challenge, Endurance event)
- All aspects of the vehicle are being developed keeping the competition rules, constraints and criteria in mind.
- Our focus The sprint challenge
- A few criteria of our own include placing 3rd or higher in all competitions

Design Objectives

- Competitive Design and Construction
 - Third or better in each event
- Technologically Advanced Design
 - Must include electromechanical and pneumatic control

Stability and Safety

- Secure components
- No leaks or wobbles
- Safe to operate

Accessibility and Serviceability

- Comfortably access components
- Accessible for maintenance

Decision Matrix used to Select Vehicle Design

Lightweight	Aesthetics	Safety	Speed	Comfortable	Ease of Fabrication	Cost	Wow Factor	Serviceability	Aero	Stability	Efficiency
3	2	8.5	9	1	3	5	2	6.5	1	6	6

Bike Frame	Lightweight	Aesthetics	Safety	Speed	Comfortable	Ease of Fabrication	Cost	Wow Factor	Serviceability	Aero	Stability	Total
Example	2	5	6	8	3	7	9	2	9	10	4	304.5
James' Recumbent	3	7	9	6	10	10	2	7	5	6	8	299
Custom	2	4	7	6	7	3	7	9	8	6	8	295.5
James' Sprocket	6	5	4	8	5	7	8	3	3	5	4	253.5
James' Gear	6	5	7	9	5	7	8	3	3	5	4	288
Nathan Mower (Custom)	1	5	8	10	7	4	7	9	8	5	8	341
Nathan Rowing	1	5	1	10	9	1	3	10	2	7	7	212.5
Nathan Two Speed	6	5	5	8	5	7	8	5	2	5	4	257.5
Caleb Racer	6	7	7	5	5	6	9	2	4	5	4	263.5
Caleb Triple	3	5	8	5	6	8	7	4	7	5	7	295.5
Caleb Gramps	9	8	2	3	8	2	5	10	2	2	3	171
Riley Gas Frame	6	8	7	6	5	7	8	5	3	5	4	269
Riley Recumbent	3	7	9	6	10	10	2	7	5	6	8	299
Riley Cargo	4	7	4	5	6	3	5	7	8	4	8	258
Yaz Quad	2	8	10	4	10	4	4	9	10	3	10	324

Vehicle Design

Hydraulic Circuit Modes

Simulation

Hydraulic System: Pump Selection

Available Power Input from Rider

$$T_{input} = 221$$
 in-lb

$$\omega_{input} = 80 \text{ rpm}$$

 $Power_{input} = \frac{T_{input} \cdot \omega_{input}}{63\ 000} = 0.28 \text{ hp}$

$$\omega_{pump} = \omega_{input} \cdot GR = 80 \text{ rpm} \cdot 5 = 400 \text{ rpm}$$
$$Q_{pump} = \frac{D_{pump} \cdot \omega_{pump}}{231} = \frac{0.21 \frac{\text{in}^3}{\text{rev}} \cdot 400 \text{ rpm}}{231} = 0.36 \text{ GPM}$$

Pump Flow

٠

• Pump Displacement $T_{pump} = \frac{T_{input}}{GR} = \frac{221 \text{ in-lb}}{5} = 44.2 \text{ in-lb}$ $D_{pump} = \frac{T_{pump} \cdot 2\pi}{P_{pump} \cdot \eta_{pump}} = \frac{44.2 \text{ in-lb} \cdot 2\pi}{1500 \text{ psi} \cdot 0.9} = 0.21 \frac{\text{in}^3}{\text{rev}}$

• Pump Power

$$Power_{pump} = \frac{T_{pump} \cdot \omega_{pump}}{63,000} = \frac{44.2 \text{ in-lb} \cdot 400 \text{ rpm}}{63,000} = 0.28 \text{ hp}$$

Hydraulic System: Pump Selection

Pump Selected:

Dynamic Fluid Hydraulic Gear Pump Model GP-F10-34-P-C

- 0.20 CIR Displacement
- Clockwise Rotation
- 1/2" Diameter Keyed Shaft
- SAE "AA" 2-Bolt Mounting Flange

Hydraulic System: Motor Selection

 $T_{wheel} = 108.21$ in-lb

$$T_{motor} = \frac{T_{wheel}}{GR} = \frac{108.21 \text{ in-lb}}{3} = 36.07 \text{ in-lb}$$

• Motor Displacement

$$D_{motor} = \frac{T_{motor} \cdot 2\pi}{P_{motor} \cdot \eta_{motor}} = \frac{36.07 \text{ in-lb} \cdot 2\pi}{1300 \text{ psi} \cdot 0.9} = 0.19 \frac{\text{in}^3}{\text{rev}}$$

• Motor Speed $\omega_{motor} = \frac{Q_{pump} \cdot 231}{D_{motor}} = \frac{0.36 \text{ GPM} \cdot 231}{0.19 \text{ in}^3} = 424.79 \text{ rpm}$

Motor Power

 $Power_{motor} = \frac{T_{motor} \cdot \omega_{motor}}{63,000} = \frac{36.07 \text{ in-lb} \cdot 424.79 \text{ rpm}}{63,000} = 0.24 \text{ hp}$

rev

• Vehicle Speed

$$v_{vehicle} = \frac{2\pi \cdot \omega_{motor} \cdot r_{wheel}}{\text{GR} \cdot 1056} = 10.95 \text{ mph}$$

Hydraulic System: Motor Selection

Motor Selected:

Dynamic Fluid Hydraulic Gear Motor Model GM-F10-34-P-C

- 0.20 CIR Displacement
- Clockwise Rotation
- 1/2" Diameter Keyed Shaft
- SAE "AA" 2-Bolt Mounting Flange

Hydraulic System: Accumulator Selection

Accumulator Selected:

Hydac Bladder Accumulator Model SB330-4A1/112S-210C

- 1 Gallon Bladder Accumulator
- 3000 psi Maximum Pressure
- 160 GPM Maximum Flow Rate
- Operating Temperature: 5 °F 180 °F

Pneumatic Circuit Layout

Components:

- 1 Gallon Tank
- Exhaust Valve
- Quick-connect intake valve
- Pressure Gauge
- Pressure Regulator
- Solenoid Controlled Valve
- Pneumatic clutch
- ¼" Air line

Pneumatic Clutch

TORQUE vs. AIR PRESSURE

Mach III C2D2R-STH

- 200 in/lb @ 80 psi
- Air engagement, spring return
- 2 friction disks
- New Capacity .10 cubic inches
- Worn air Capacity .24 cubic inches

Electronics And Controls – Key Components

Milwaukee Tool 18V Li-ion Battery

Arduino Uno Microcontroller

5V Relay Module

Toggle and Pushbutton Switches

Transmission Adapter

Trike Frame FEA Analysis

Wheel Adapter FEA Analysis

Vehicle Construction

Rear-End Adapter Welding

Revisions during assembly

Fluid Power

- Accumulator and pneumatic tank placement
- Motor orientation
- Pump mount bracing
- Welding wheel adapters and accumulator brackets
- Shifting mechanism

Progress Made Toward Final Vehicle

- Final Vehicle Completed
- Design appears reliable
 - No malfunctions during competition events
 - No component failure under high-stress loading
- Design appears safe
 - Most moving parts (i.e., chains and sprockets) are located away from the rider
 - Mechanical brakes can stop vehicle with full accumulator charge
 - If electronics malfunction, the vehicle will default into the "drive" mode

Lessons Learned

- Bigger Electronics Box
- Plan Line Paths
- Add check valve
- Clutch Placement and Gear Ratio
- Too Much Rotational Inertia
- Material Selection/Use the Correct Alloy in ANSYS
- Placement and Orientation Matters
- Take Fluid Power Circuits Before Building Fluid Power Bike

Acknowledgements

- Mike Helbig
- Luis A. Rodriguez
- National Fluid Power Association
- SunSource
- Iowa Fluid Power
 - Chandler Armstrong
 - Josh Scarbrough

Questions

