



NFPA Education and Technology Foundation FINAL PRESENTATION Michigan Technological University David Wanless 4/6/2021



**Michigan Tech** 

### **Team Introductions**



Members: John Kurburski, Jake Lehmann, Andrew Ward Alexander Provoast
Faculty advisor: Dave Wanless
Mentors: Courtney Castelic & Cedrick Barber





# Midway Summary 2/11/21



- Design Objectives: Schematics Finalized Shortly After Midway Review
- Vehicle Design: Placements of Motor and Pump
- Fluid Power Circuit Design: Schematic Was Not Finalized



# Midway Summary 2/11/21



- Selection of Hardware: Mix of Parts on Hand, on Order, and Waiting to be Ordered
- Results and Incorporations: Feedback Taken from Both Review and Mentor Consultations, Changed and Improved Designs



## **Spring Objectives**



- Build a Safe and Reliable Vehicle
- Finalize Hydraulic Design
- Finalize Pneumatic Circuit Design
- Fully Assemble Hydraulic and Pneumatic Circuits
- Successfully Test All Functions of the Bike



#### **Bike Assembly**





- 1. Air Tank
- 2. Air Piston
- 3. Accumulator
- 4. Manifold
- 5. Hydraulic Tank
- 6. Hydraulic Motor



### **Bike Assembly**





- 1. Air Tank
- 2. Hand Pump
- 3. Hydraulic Pump
- 4. Air Piston



## **Hydraulic Upgrades**



- Smaller & Lighter Accumulator
- Simplified Hydraulic System
- User friendly Valve
   Actuation Via Pneumatics
- Added Relief and Check Valves



## **Hydraulic Schematic**



**Full Hydraulic Schematic** 

Last Updated: 3/18/21 By: Alexander Provoast





## **Custom Back Rack Design**



- Easily Removable
- Strong and Lightweight Skeleton Design
- Provides Many Mounting Options
- Base of Whole Hydraulic Structure
- Could Be Transferred to Another Bicycle





## Pneumatic System Updates



- Finalized Pneumatic Layout
- Spec'd Pneumatic Cylinders
- Ordered and Installed Parts
- Performed System Test



### Valve Actuation



- Use of air cylinders to open and close hydraulic valves
- Switches Near Handlebar for Easy Actuation
- Allows Hydraulics and Pneumatics to Work Together



#### **Pneumatic Switches**







#### **Pressure Regulator**







## Air Cylinder & Valve







#### Pneumatic Cylinder Placement Calculations





## Air Cylinder & Valve







### **Pneumatic Logic Design**







#### **Pneumatic Simulation**







### **Gear Ratio**



| Original Gearing |            |           |       |           |  |  |
|------------------|------------|-----------|-------|-----------|--|--|
| Pedal rpm        | Pedal Gear | Pump Gear | Ratio | Pump rpm  |  |  |
| 80               | 52         | 20        | 2.6   | 208       |  |  |
| Motor rpm        | Motor Gear | Hub Gear  | Ratio | Wheel rpm |  |  |
| 208              | 20         | 20        | 1     | 208       |  |  |

| New Gearing |            |           |       |           |  |  |
|-------------|------------|-----------|-------|-----------|--|--|
| Pedal rpm   | Pedal Gear | Pump Gear | Ratio | Pump rpm  |  |  |
| 80          | 52         | 20        | 2.6   | 208       |  |  |
| Motor rpm   | Motor Gear | Hub Gear  | Ratio | Wheel rpm |  |  |
| 208         | 10         | 20        | 0.5   | 104       |  |  |

#### Original Ratio: 2.6 New Ratio: 1.3

- Motor and Pump work more efficiently at higher rpms.
- Gear ratio between motor and rear wheel restricted motor rpm to wheel rpm.
- 1:1 ratio gear drive between motor and rear wheel was changed to 0.5 to allow for higher motor rpms at lower speeds and higher torque.



### **Gear Ratio**





Original Meshed gears 40 teeth Motor/Hub Ratio: 1



New Sprocket & Chain 10 to 20 teeth Motor/Hub Ratio: 0.5



## Testing



#### All Tests Performed With 2 Trials

- 180 psi Nitrogen pre charged accumulator
- 1500 PSI charged accumulator
- 500ft Sprint: 29 Seconds
- 1 Mile Endurance: 7Min10Sec
- 100+ ft Efficiency: 25%



## **Challenges Faced**



- Part Orders Delayed or Backordered
- Time Crunch
- Learning Curve of Hydraulics and Pneumatics
- Correct Size and Length Hoses
- Covid Restrictions
- Pulsations While Pedaling



#### **Lessons Learned**



- Deeper Understanding of Both Pneumatics and Hydraulics
- Machining and Fabricating Skills
- Communicating with Industry Contacts
- Dealing with Setbacks





#### Thank You for Your Time Are There Any Questions?

