

NFPA Education and Technology Foundation FINAL PRESENTATION The University of Akron Dr. Scott Sawyer April 16th, 2020

Presentation Overview

- Team Introduction
- Problem Statement & Objectives
- Summary of Midway Presentation
- Vehicle Construction
- Progress to Final Vehicle
- Lessons Learned & Conclusion

The University of Akron Team

Left to Right: Luke Featherston, Alex Colucy, Evan Blitz, David Kotovets, Jacob Steiner

Problem Statement and Objectives

- Design a custom vehicle utilizing hydraulic components to compete in The Fluid Power Vehicle Challenge
 - Sprint Race: 500 feet time trial.
 - Efficiency Race: Travel maximum distance using pressurized accumulator from a stop.
 - Endurance Race: 1 mile time trial.

Summary of Midway Presentation

- Design ObjectivesVehicle Design
- Circuit Design
- Selection of Hardware
- Calculations and Results

Design Objectives

- 1. Frame Selection
- 2. Minimize number of added components
- 3. Optimize design for future improvements
- 4. Design to the parameters of the competition

Vehicle Design

Initial Bike Design ------ Final Bike Design

Circuit Component List

• SV9-10N-A

Solenoid Valve (4-way, 3-position)

• SV1-10-3

Solenoid Valve (3-way, 2 position)

• RV1-10

Pressure Relieving Valve

• CV3-8

Check Valve

- F11-5 Parker Motor/Pump
- 1 Gal. Steelhead Accumulator

Reservoir

Hardware Selection

Planned Hardware:

- Driveline front sprocket (46 teeth)
- Single speed rear (16 teeth)
- Rim Brakes
- Standard Tires
- Chain Drive
- Steelhead Bladder Accumulator
- Parker F11-5 Motor / Pump
- eX705 HMI
- Hydac TTC-32 Controller
- 2 12V Batteries

Calculations

Target Values Based off of Calculation Predictions:

Endurance Challenge: 4 minutes and 50 seconds

Sprint Challenge: 14.71 seconds

Efficiency Challenge: 31.63%

Vehicle Construction

Design Improvements

Final Mount Design

Accumulator Mount Design

Reservoir Mount Design

Mounting Reservoir and Accumulator

Mounting The Pump and Motor

Electronic Mounting

Mount for HMI

Mount for

Programming

Fluid Power

HMI: eXor 705

- -Simplified Screen layout
- -Button turns green when circuit is activated.
- Controller: Hydac TTC-32 -modified program for our needs

Pneumatic Brakes

Design objective: To create a system using compressed air to assist with slowing down of the hydraulic vehicle.

Non-Repairable Reservoir / 3D Printed Mount (Go Zips!)

Heavy Duty 2-Position 3-Way Normally Closed Switch

0 Series Regulator

Original Line® Air Cylinder

How it works

By hooking up the air cylinder to a regular caliper brake, toggling of a 3-Way switch, and directing the flow of air to retract the piston rod; We were able to achieve a braking force applied to the tire rim.

Progress towards Final Vehicle

Valve Mounting & Hose Routing

-After pump & motor were mounted -Hoses bought at our local Parker store

Before crimping/tightening

Chain sizing

- Chains would keep popping off
 - Tried several different chain lengths
 - Needed a half-link
 - Adjusted mount for better alignment between sprockets

Transfer of Programs/Wiring

- Issues encountered with logging in to the controller (baud rate mismatch)
- Wired up a temporary control circuit that
 bad to be used for our final races

HMI Customization

Soldering

Results

Efficiency: 12% Distance Traveled: 1,312 ft. Sprint Race: 41.3 seconds Endurance: 7 minutes, 10 seconds

Lessons Learned

- Fundamentals of hydraulics
- Iterative design process
- Working with a team virtually
- Time needed for testing
- Troubleshooting

• Elementary knowledge of electronics

Conclusion

Special Thanks to:

- NFPA
- Josh Scarbrough IFP Rep
- Brian Shields- Team Mentor
- Dr. Scott Sawyer Team Advisor
- Aaron Trexler UA Engineering Technician

Sponsors!

