

NFPA Education and Technology Foundation Final Presentation University of Utah Advisor: Marc Calaf April/8/2021

Team Members

Anas Abdulrahman

Josh Workman

Ahmed Almusawi

Mitch Dial

Jake Healey

Mitch Nelson

Problem Statement & Objectives

This project's goal is to design a vehicle to compete in the Fluid Power Vehicle Challenge. The vehicle must transmit power via a hydraulic system.

However, the following objectives of this project are important:

- Participate in the Fluid Power Vehicle challenge
- Gain experience and build a good networking with industry
- Give recommendations and suggestions to the next team

Summary of Midway Presentation

The objectives of Midway Presentation:

- 1. Design a vehicle to compete in a Fluid Power Vehicle Challenge.
- 2. Learn more about Hydraulics

component	quantity	unit price	total price
Free flow nose to side check valve (30 PSI to open)	4	\$22.63	\$90.52
Fully adjustable needle valve with reverse flow check	1	\$48.61	\$48.61
3-way, solenoid-operated directional spool valve (Includes 12VDC Coil)	4	\$89.41	\$357.64
Additional 12VDC Coils for Sun Valves listed above. Includes transient voltage diode.	4	\$23.81	\$95.24
DCJ T-5A Cavity with -8 (1/2") ports	1	\$31.91	\$31.91
ACI T-162A Cavity with -6 (3/8") ports	8	\$22.63	\$181.04
Bladder accumulator, 1 gallon	1	\$565.50	\$565.50
Clamp type mount for SB330-4A1/112S-210C	1	\$41.78	\$41.78
Gear Pump Aluminum SAE AA (2-Bolt) (CW) .12 CID Keyed Shaft (1/2")	1	\$77.81	\$77.81
Gear Pump Aluminum SAE AA (2-Bolt) (CW) .16 CID Keyed Shaft (1/2")	1	\$77.81	\$77.81
Gear Pump Aluminum SAE AA (2-Bolt) (CW) .20 CID Keyed Shaft (1/2")	1	\$77.81	\$77.81
Gear Pump Aluminum SAE AA (2-Bolt) (CW) .25 CID Keyed Shaft (1/2")	1	\$84.63	\$84.63
Gear Pump Aluminum SAE AA (2-Bolt) (CW) .31 CID Keyed Shaft (1/2")	1	\$84.63	\$84.63
Bent Axis Piston Motor CETOP Flange (2 bolt) .305 CID with Keyed Shaft	1	\$653.25	\$653.25
Pump, Lever Operated, Push to pump, .46 CID, cartridge only (1/2" Handle Needed Max 36")	1	\$64.12	\$64.12
Aluminum line body for MP10-01-C-N	1	\$14.27	\$14.27
1/2" 6061 Aluminum Round 36" \$4.24	1	\$5.51	\$5.51
Test Point Connector, -6 SAE	1	\$8.71	\$8.71
Dynamic Test Probe adapter 1/4-NPT	1	\$20.02	\$20.02

Vehicle Construction

- Custom frame allows flexibility for component placement
- 3 wheels adds stability and space for components
- Rectangular aluminum lightweight and easy to manufacture
- Recycled our old bike parts saved money and time

Vehicle Construction Cont.

- Safety factor of 8
- Modular rear rack mount
- Custom sprocket mounts
 - Motor- 3.4:1
 - Safety Factor: 2
 @ 1000 lb/in
 - Pump- 8:1
 - Safety Factor: 4
 @ 1000 lb/in
- Size 40 chain
 - Safety Factor 2@ 1000 lb/in

Motor Sprocket (13 teeth)

Vehicle Construction Cont.

Fluid Power Circuit Design

Fluid Power Circuit Design

Electronics

- Custom PCB
- DRV103H Solenoid Drivers
- TTGO T-Display Microcontroller
- Dewalt 20V Max Battery

Vehicle Testing

Setbacks:

- Leaks
- Motor stiffness
- Hand pump inlet/outlet mixup
- Sprocket unscrewing from hub

Solutions:

- Re-tightened jam nuts
- Ran motors at high psi
- Re-hose configuration
- Interfaced sprocket with spokes

Final Vehicle

Race Results

Endurance Challenge

- Final Time 24 minutes, 50 seconds
- Distance traveled after regenerative braking 5ft

Sprint Race

• Final Time - 34 seconds

Efficiency Challenge

- Distance traveled 590 ft
- Efficiency score 0.03

Lessons Learned

- Build your own frame easier overall
- Use three wheels adds stability and space for components
- Design for low/medium speed and high/medium torque (don't use 8:1 ratio)
- Distribute the weight between the wheels
- Use one rear wheel driven by a single motor, and two front wheels
- Use ball valves and pneumatics to control them
- Don't buy components until you confidently understand their pros/cons.
- Look into buying a used a motor. Less stiff.
- Design for ergonomics. Not shortcuts.

Shout Outs

• ERIKS North America

Fluid Power VEHICLE Challenge

• Interwest Mfg. & Waterjet Cutting

• Hydraulic Controls, Inc.

• Ernie Parker

Questions?