



NFPA Education and Technology Foundation

FINAL PRESENTATION UNIVERSITY OF CINCINNATI MUTHAR AL-UBAIDI APRIL 8<sup>TH</sup> 2021



### Agenda



- Team Introductions
- Problem Statement & Objectives
- Summary of Midway Presentation
- Vehicle construction
- Progress Made Towards Final Vehicle
- Lessons Learned
- Questions





## **Team Introductions**



### Muthar Al-Ubaidi, PhD



- Professor and Director Mechanical Engineering Technology Program
- Education
  - B.S. Mechanical Engineering, University of Baghdad
  - Masters Nuclear Engineering, University of London
  - PhD Nuclear Engineering, University of Cincinnati

#### Hometown

- Baghdad, Iraq
- Came to Cincinnati, USA in 1978
- Project Team

University of

CINCINNAT

Faculty Advisor



4

### Jake Fitzsimmons



- Major
  - B.S. Mechanical Engineering Technology
- Year
  - 5th
- Hometown
  - Springfield, Ohio
- After Graduation
  - Process Engineer at SugarCreek
- Project Team
  - Frame Team & Team Lead





## Molly Hoying



#### • Major

- B.S. Mechanical Engineering Technology
- Master, Business Administration
- Year
  - 5th
- Hometown
  - Centerville, Ohio
- After Graduation
  - Data Analyst at L3Harris
- Project Team
  - Circuit Team





### **Chris Schalk**



- Major
  - B.S. Mechanical Engineering Technology
- Year
  - 5th
- Hometown
  - Loveland, Ohio
- Co-op Experiences
  - KBA Architects
  - TECT Power
  - Cincinnati Incorporated
- Project Team

University of

CINCINNATI

Frame & Gearing Team



### Ian Gilbertsen



- Major
  - B.S. Mechanical Engineering Technology
- Year
  - 4th
- Hometown
  - Powell, Ohio
- Co-op Experiences
  - GE Appliances, a Haier Company
  - Goodyear Tire and Rubber Company
- Project Team
  - Circuit Team





## **Christopher Pyzik**



#### • Major

- B.S. Mechanical Engineering Technology
- Year
  - 5th
- Hometown
  - Avon Lake, Ohio
- After Graduation
  - Project Engineer at Emerson Electric
- Project Team
  - PLC Design & Circuit Team





### **Assigned Mentor**



Assigned Mentor

- Dan Turner of GPM Controls
  - Hydraulic expert.
  - Provided oversight on manifold, circuit, and calculations.
  - Supplied necessary connections for build.





# Problem Statement & Objectives



## Problem Statement & Objectives



#### **Norgren Competition**

#### Problem Statement &

**Objectives** 

- Achieve a 15-mph max speed
- Increase the efficiency of the bike
- Use only 5% from last year's bike
- Improve on last year's design

#### Circuit and Vehicle Design

- Enhanced circuit design and features
- Improve component placement
- Improve frame design
- Implementing a pneumatic component

#### <u>Overall</u>

- Master new concepts
- Work ahead and prepare









**Design Objectives:** 

- Decrease the overall height of the bike from last year's design to make it easier to ride.
- Create a "cleaner" circuit with a custom manifold.
- Increase the overall efficiency of the bike compared to last year.
- Decrease the overall weight for greater efficiency and speed.
- Improve the PLC design.





#### Vehicle design:

- Standard men's design based on its geometry to store reservoir
- Ensures accumulator is upright
- Created manifold to reduce weight and complexity
- Picked a steel frame material based on its manufacturability









SOLIDWORKS Educational Product. For Instructional Use Only



#### Fluid Power Circuit Design:



#### Selection of Hardware:



#### Motor: Danfoss SNM2NN

• .513 CIR

University of

CINCINNATI

 Chosen based off calculations.



#### Pump: Elika ELI2A-D-9.6

- .586 CIR
- More efficient at low rpm due to helical gears.





#### Accumulator: Carbon Fiber

- 1 Gallon Bladder
- 3000 psi
- Very lightweight (10.8lbs)

Custom Hydraulic Manifold:

• Utilized VEST Inc. for manifold design software and training.











Electronic Hardware:







#### PLC: Barth STG-600

- 10 Inputs 9 Outputs
- Wide range of voltages
- Intuitive programming software

#### PLC Extras: Arduino & LCD

- Arduino Uno
- I<sup>2</sup>C LCD
- Displays drive modes to user







Power

















#### **Pneumatic Receiver:**

- 2"x12"
- 250 Max PSI

#### Air Cylinder:

- Retracts when pressure is provided
- 250 Max PSI



#### **Race Results**



| Sprint Race |          |  |
|-------------|----------|--|
| 1           | 00:52.44 |  |
| 2           | 01:07.81 |  |

| Endurance Race |          |  |
|----------------|----------|--|
| 1              | 10:09.87 |  |
| 2              | N/A      |  |

|   | Efficiency Race                 |
|---|---------------------------------|
| 1 | 24.35 (100') 2:44.92 (1136.50') |
| 2 | 20.42 (100') 2:18.34 (1193.00') |









#### Frame Build:















Hydraulic Circuit & Piping Build:











University of

CINCINNATI





#### **Electronics:**













#### **Pneumatic Circuit Build:**











# Progress Made Towards Final Vehicle



### Progress Made Towards Final Vehicle



**Reliability:** Test runs of drive modes, tested by several people, robust and durable but not heavy.

**Safety:** Pneumatic Brake, Accessibility of Buttons, Chains on interior of frame, Comfortable.

**Quality**: Hand built the circuit tubing, 3D printed components attached externally, Original design.



#### **Final Vehicle**







#### **Final Vehicle Components**







## **Lessons learned**



### **Lessons Learned**



#### Design:

- Chain length was slightly off in placement with petals and pump.
- Incorrectly sized port for reservoir
- Allocate more time for the testing of the bike
- Add stronger check valve after pump.
- Design a gear ratio between motor and drive wheel for regen circuit.

#### **Build**:

- Pump/motor placement had to be altered for the chain
- Order extra parts in case any components break. (i.e. PLC and Voltage Reducer)
- Needed bearings for back wheel
- Need more clearance for back wheel and frame





## **Thank You!**





## **Questions?**

