Ν F Ρ

NFPA Education and Technology Foundation Western Michigan University Team Members: Jared Beno, Hong Yi Lee, Hiew Hang Wan Team Advisors: Jorge Rodriguez, Alamgir Choudhury Industry Mentor: Patrick Petroff 4/9/2021

Final Presentation

Western Michigan University

• Fluid Power Vehicle Team

Hiew Hang Wan

Agenda

- Design Requirements
- Calculations
- Components
- Hydraulic System
- Electronic System
- Pneumatic System
- The Build
- Testing and Analysis
- Final Product
- Failure Analysis Report
- Lessons Learned

Design Requirements

- Vehicle propels through hydraulics
- Must include pneumatics
- Must include energy storage device
- Maximum total accumulator volume of 1 gallon
- Single rider
- Maximum vehicle weight without rider 210 pounds
- All design must comply with safety policies

Frame

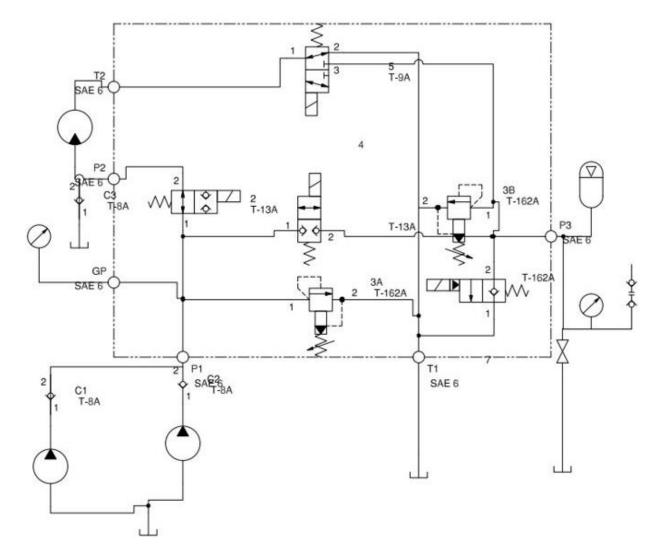
Recumbent Trike (from SunBicycle Tadpole)

Design 2: Recumbe	nt Tricylo	2 Whool							
	<u> </u>								
Design 3: Upright R									
Design 4: One-Whe	el Unicycl	e							
Category	1-10 Design 1		Design 2		Design 3		Design 4		
	Weight	1-10	Point	1-10	Point	1-10	Point	1-10	Point
Safety	10	8	80	10	100	7	70	2	20
Efficiency	9	7	63	9	81	8	72	1	9
Stability	9	10	90	10	90	9	81	3	27
Weight	8	4	32	5	40	8	64	3	24
Operability	8	8	64	9	72	7	56	1	8
Maneuverability	7	6	42	7	49	7	49	5	35
Manufacturability	7	8	56	7	49	7	49	1	7
Innovation	6	3	18	6	36	6	36	10	60
Maintenance	5	8	40	7	35	9	45	5	25
Drag	5	3	15	9	45	7	35	4	20
Assembly	4	9	36	8	32	2	8	6	24
Ergonomics	3	7	21	10	30	9	27	5	15
Cost	2	5	10	7	14	5	10	5	10
Aesthetic	1	6	6	7	7	6	6	3	3
		Total Points:	573	Total Points:	680	¹ otal Points:	608	Total Points:	287

Summary of Midway Calculations

- Line sizing : 0.18 in. ID (Pressure Line) 0.277 in. ID (Suction Line)
- Motor gear to wheel ratio: 1 to 1
- Pedal to Pump Ratio: 1 to 12
- Estimated Torque Needed 86.39 lb.in.
- Estimated Horsepower 0.5 hp
- Estimated Wind Resistance 0.21 hp

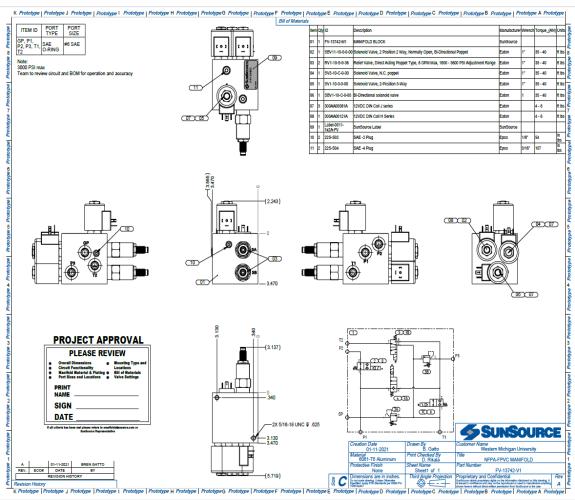
Updated Calculations


- Load 286.1 lbs. (including rider)
- Estimated Torque Needed 82.38 lb.in.
- Estimated Horsepower 0.478 hp

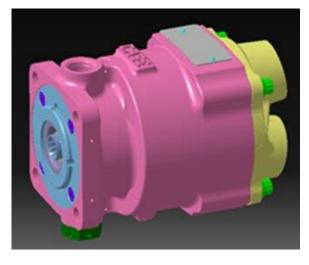
Gear Ratio

Pedal to Pump Ratio: 1 to 26.67 Motor to Wheel Ratio: Highest Ratio 1 to 1.615 Lowest Ratio 1 to 0.527

Hydraulic Circuit



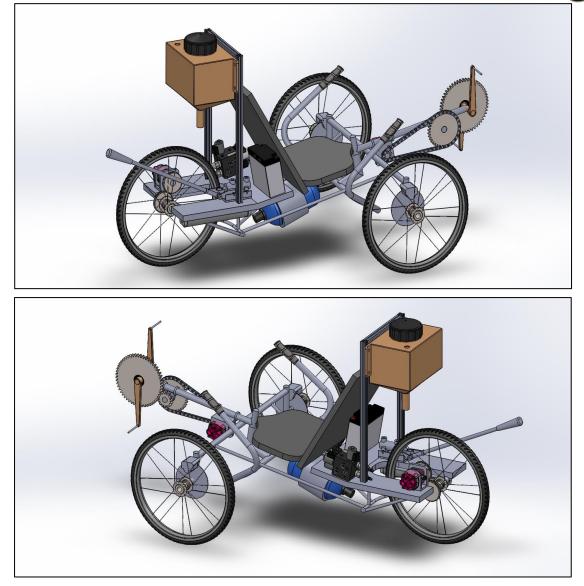
Hardware Selection


- 6061-T6 Aluminum
- High corrosion resistance
- High yield strength
- 41.78 cu in.
- 12 sq in.
- Maximum length 8.86 in.
- Maximum height 5.7 in.
- 12 VDC coils

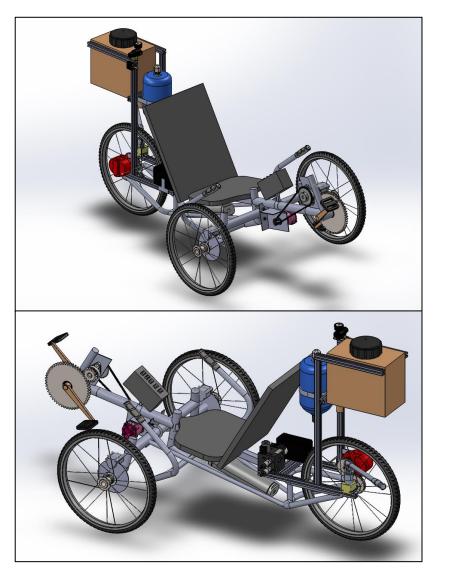
Hardware Selection

- Eaton Gear Motor 26703-DAA
- -0.62 CIPR, fixed displacement
- -3000 psig
- -Bi-rotational, internal drain
- -Weight: 7.0 lbs.

<u>Pump:</u>


- Parker Rotary Pump
- -0.241 CIPR, fixed displacement
- –6600 rpm
- -3000 psig
- -6.5 gpm
- -Weight: 3.44 lbs.

Energy Storage Device: -1 gallon Steelhead Composite Accumulator

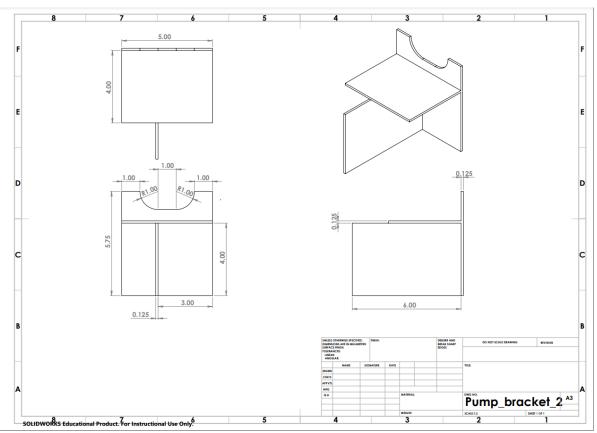


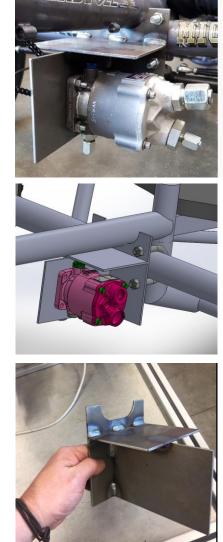
Midway Review Design

Final Design

Mounting Platform

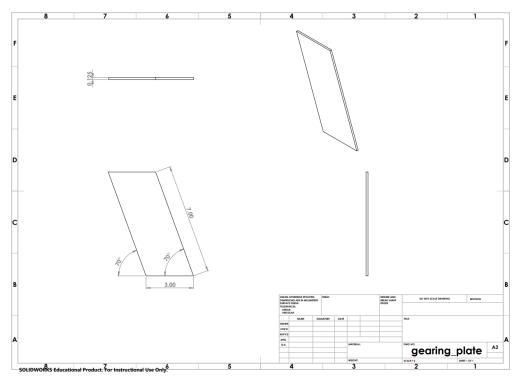
- 80/20 Component Framework
 - T-Slot mounting hardware
 - High Tensile Strength
 - Lightweight





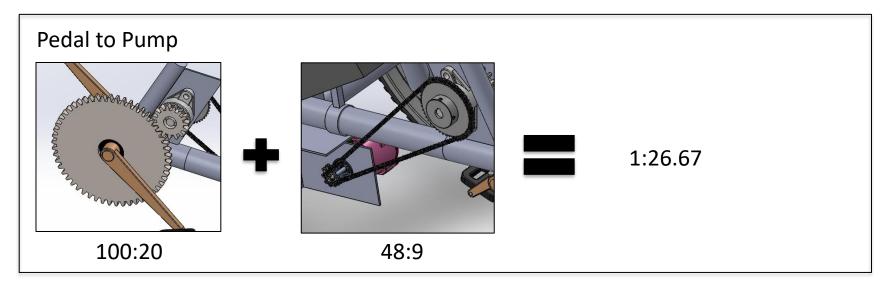
Custom Made Parts

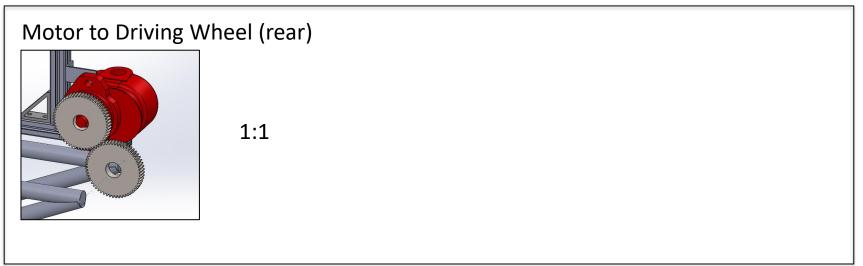
- Pump mounting bracket
- Mig welded 0.1625" steel by WMU machine shop
- Secured onto frame with 5/16" U-bolts



Custom Made Parts

- Gear mounting platform
- Welded onto frame while still adjustable
- 1st set gear ratio = 100:20
- 2nd set gear ratio = 48:9
- Pedal to pump = 1:26.67





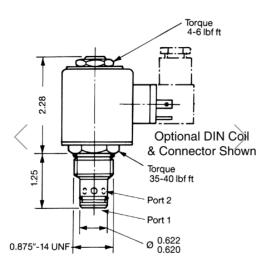
Gear Ratio

Gear Speed Hub

- Shimano SG-8R25 (8 Speed Internal Rear Hub)
- 302% Gear range
- Connected to driving wheel and motor

0	1.615:1
7	1.419:1
6	1.223:1
5	1:1
4	0.851:1
3	0.748:1
2	0.644:1
1	0.527:1

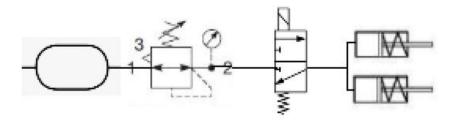
Electronics


- 5 Gang Switchtec Switchbox with Digital Voltmeter Display
- 12 VDC DIN Coil (J & H Series) 30W (2.5 Amp at 12V)
- Lithium-Ion Battery (1.87lbs)
- 70% lighter than lead acid battery
- Short-circuit and Output Overcurrent Protection

Specification: Type of Battery: Li-ion(NCM) Nominal Voltage:11.1V Nominal Capacity: 9Ah (99.9WH) Max Charge Current: 4 Amp Max Continuous Discharge Current: 15 Amp Max Pulse Discharge Current: 30A for 3S Working Voltage range: 9V~12.6V Charge Temperature: 0~45°C Discharge Temperature: -10~+60°C Storage Relative Humidity: 65±20%

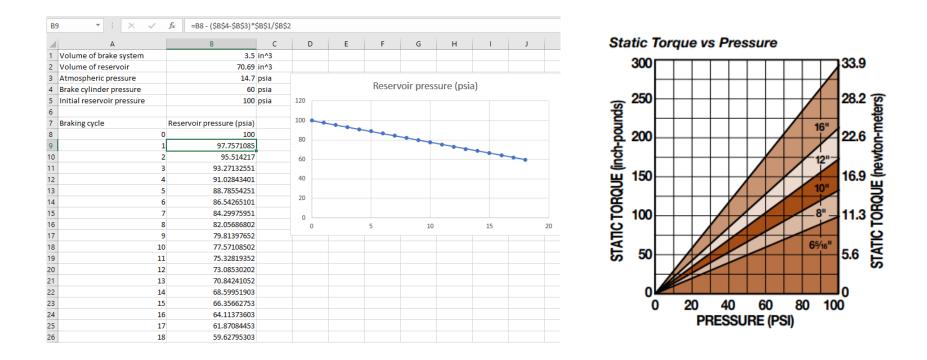
Pneumatic Components

- Air Brakes (Parking Brake and Auxillary)
 - Bimba Air Reservoir (3"bore x10"length)
 - Bimba Mini Regulator
 - Pneumadyne high flow 3-Way 2-Position Valve
 - 2 Tolomatic Pneumatic P-10 Single Acting Caliper Brake
 - ¼" OD Polyurethane Tubing



Pneumatic Brakes System

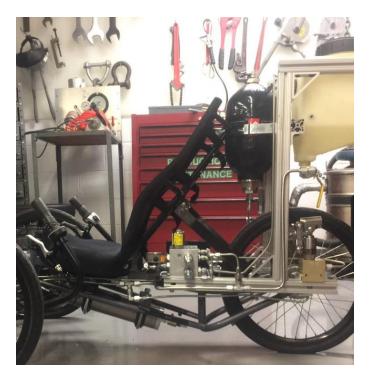
From air reservoir


To tee then split to two caliper brakes

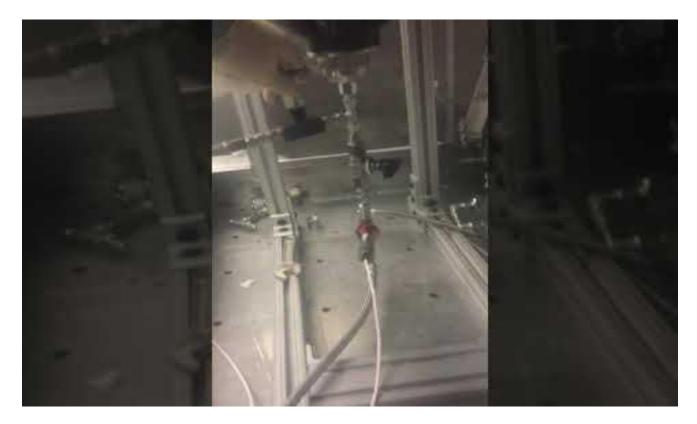
Pneumatic Calculations

- 60 PSI Lower Limit to develop 175-inch pounds of Static Torque
- (Calculated Torque for vehicle motion = 82-inch pounds)
- Brake Deployment of 18 brake cycles using 70 cubic inch reservoir

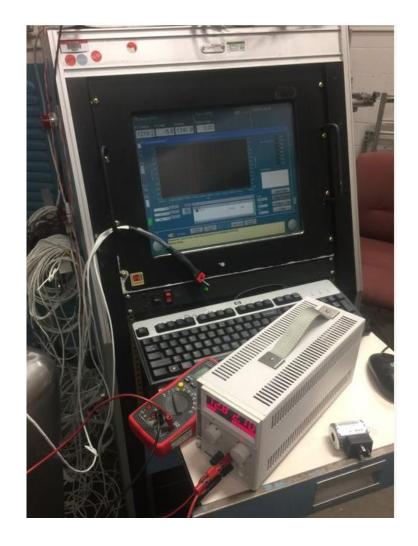
Pneumatic Brakes


Vehicle Construction

- Disassembly and component mock-up done on apartment floor.
- Further assembly of components done in WMU Fluid Motion Lab.
- Cutting of 80/20 framework and fabrication/installation of stainlesssteel hydraulic lines done at Parker Hannifin Maintenance Dept.



Testing and Analysis

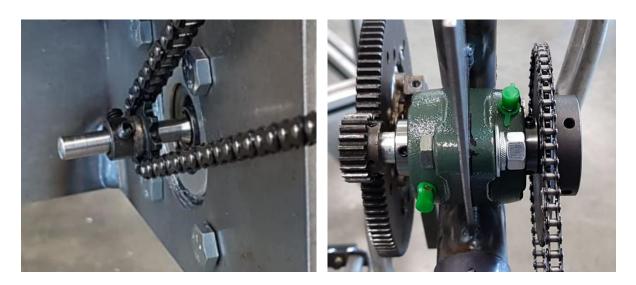

 Pressure testing accumulator and motor circuit

Testing and Analysis

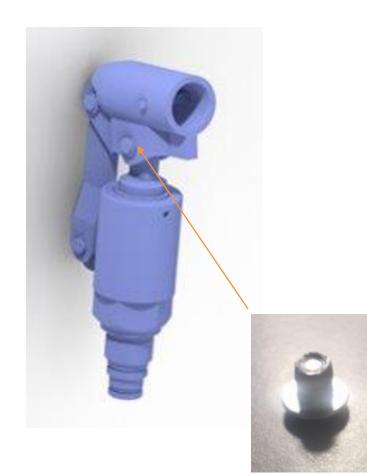
Final Design

Race Results

Efficiency Race						
1st attempt	14%					
2nd attempt	12%					
Average	<mark>13%</mark>					
Sprint Race						
1st attempt	32.41 sec					
2nd attempt	36.22 sec					
Average	<mark>34.21 sec</mark>					


Endurance Race: Not performed

- Lithium battery failure
- Gear ratio too high to pedal from stand still



• Manifold leak to return lines

• Hand pump failure

Lessons Learned

- Accurate 3D modeling reduces build time
- Order back-ups for troubleshooting
- Order more variety for experimentation
- Stay on top of orders verifying placement
- Extensively test parts individually on arrival
- Time management with action items and procedures
- How to get parts fabricated

Thank you

- NFPA for the experience
- Stephanie Scaccianoce, Jeff McCarthy, and Kent Sowatzke
- Mentors: Patrick Petroff and Dean Pollee
- Advisors: Dr. Jorge Rodriguez, Dr. Alamgir Choudhury, Dr. Javier Montefort
- WMU machine shop specialist: Mike Konkel

Questions and inquiries?

