

NFPA Education and Technology Foundation Final Presentation The University of Akron Dr. Scott Sawyer 04/20/2022

Overview

Team Introduction

Problem statement and Objective

Summary of Midway presentation

Vehicle Construction

Vehicle Testing

Final vehicle and Lesson learned

Conclusion

Team Members

Nelson Custer 5th year Mechanical Engineering Student

AbdulMuizz KamalMuili 5th year Mechanical Engineering Student

Michael Nagel 5th year Mechanical Engineering Student

Todd Styer Mentor, Parker Hannifin

Fluid Power

Dr. Scott Sawyer Advisor, University of Akron

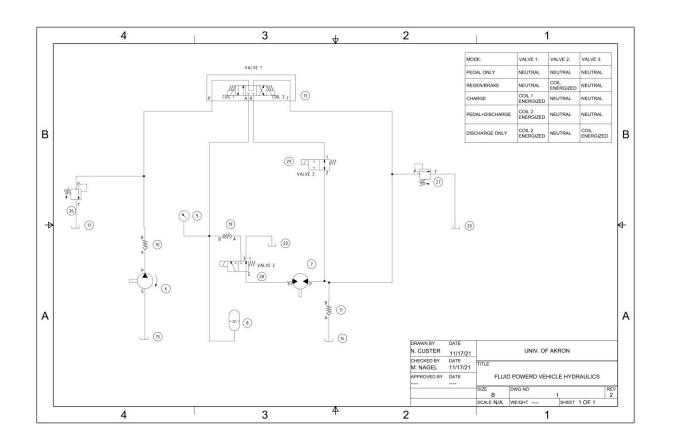
Problem Statement and Design Objectives

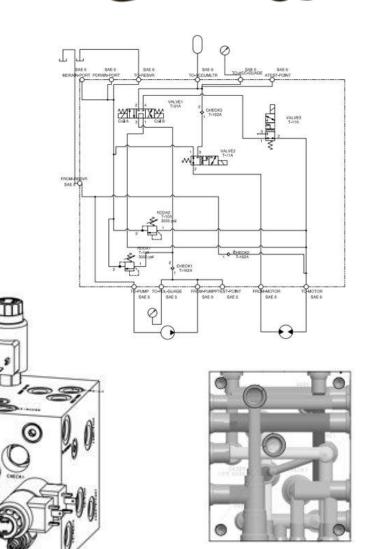
- Build a bike utilizing hydraulic components
- This year's bike focused on four objectives

Summary of Midway presentation-Vehicle design

Component Selection

- Manifold
 - Minimize pressure drop within the hydraulic circuit
- Carbon Fiber Accumulator
 - Help with weight reduction
- Custom Reservoir
 - Lightweight, 3D printed
- Parker F-11 Pump and Motor

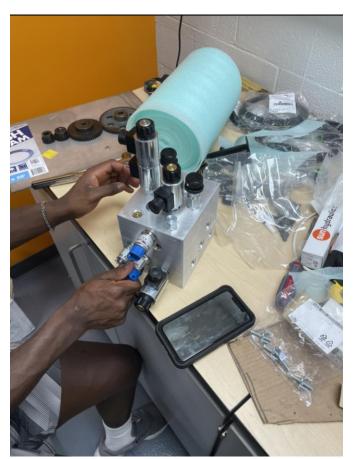

Calculations

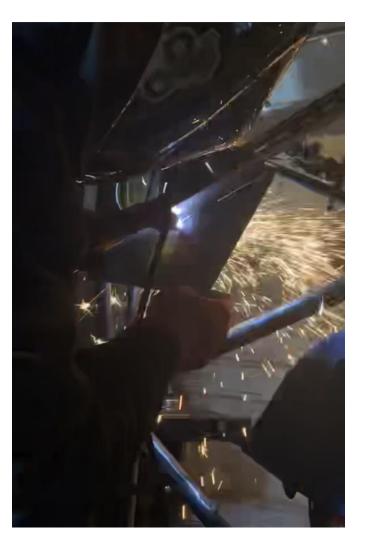

Bike Speed: 110.88rpm $x \frac{26in*3.14}{rev} * \frac{1 ft}{12in} * \frac{1 mi}{5280 ft} * \frac{60 min}{1 hr} = 8.57mph$ 8.57mph = 754.16ft/min $Power_{out} = \frac{P * Q_{out} * \eta_m}{1714}$ $P(psi) = \frac{Power_{out}*1714}{O_{out}*n_m}$ $P(psi) = \frac{0.25 * 1714}{0.144 * 0.99} = \frac{3005.8}{0.000} psi$ $\mathbf{P} = \frac{T_t * 2\pi}{V_t} \qquad T_t = \frac{\mathbf{P} * V_d}{2\pi}$ $T_t = \frac{3005.8 * 0.3 \frac{in^3}{Rev}}{2\pi} = 143.5 in * lbf$ $T_t = F_a * R_{pedals}$ $F_a = \frac{T_t * \eta_m}{R_{pedals}}$ $F_a = \frac{143.5in * lbf(0.99)}{6.7in} = 21.2lbf$

Fluid Power

Factoring out the gear ratio $4*F_a = 4*21.2 = 84.81\text{Ibf}$

Hydraulic circuit & Manifold Design




Vehicle Construction

Vehicle Testing

Metric:	Observed data:
Pedaling speed	8 mph max
Accumulator-propelled speed	14 mph max
Maximum distance without pedaling	2,000 ft

Final vehicle comparison

MINIMIZE MAXIMIZE **IMPROVE** SAFETY EFFICIENCY WEIGHT **BIKE LAYOUT**

Last year's Bike

Part	Cost
Bike	\$80
Components (including donated parts)	\$3,300
Fab work	\$500
Hardware & Misc	\$1,200
Total	\$5,080

Lessons Learned

Hydraulics fundamentals

- Programming PLC
- Advanced CAD and 3D modeling

Design and manufacturing Experience

Conclusion

Special Thanks to:

- NFPA
- Josh Scarbrough IFP Rep
- Todd Styer-Team Mentor
- Dr. Scott Sawyer Team Advisor
- Aaron Trexler UA Engineering Technician

Thank You to Our Sponsors!

