

NFPA Education and Technology Foundation NFPA Final Presentation University of Denver Dr. Rachel Horenstein April 28th, 2022

Agenda

- Team intro and problem statement
- Review of midway presentation
- Design modifications
- Vehicle Construction
- Initial Testing
- Final vehicle and subsystem design
- Lessons Learned

Meet the Team

Dr. Rachel Horenstein Faculty Advisor

Jackson Harvey Mechanical Engineer Jonathan Katz Mechanical Engineer Jimmy Colfer Mechanical Engineer Gavin McGee Computer Engineer

Problem Statement

- Students must design and construct a hydraulic-powered vehicle and compete in a series of test events and design competitions
- Project will be completed as part of senior design project, with little to no outside help on design or fabrication

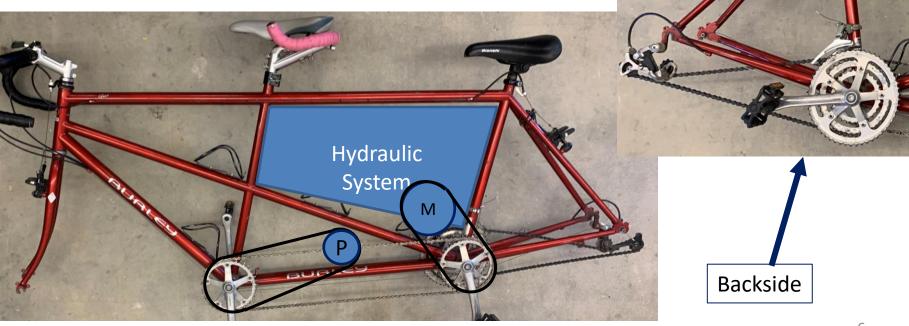
Design Objectives

- New "from-scratch" design
 - Learn from previous DU teams' mistakes
 - 2018 Lack of detail
 - 2019 Unrealistically complex
- Team goal: create simple, efficient, and fast vehicle
 - Minimizing fabrication complexity and build time
 - Focusing on the sprint and endurance challenge
 - Higher rider-dependency events
 - Top design speed 35 MPH

2018 DU Team Design

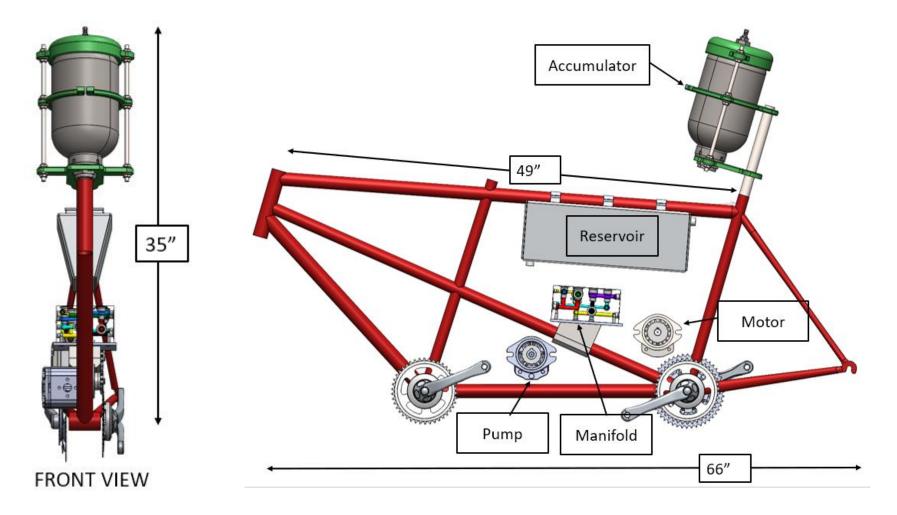
2019 DU Team Design

Midway Presentation

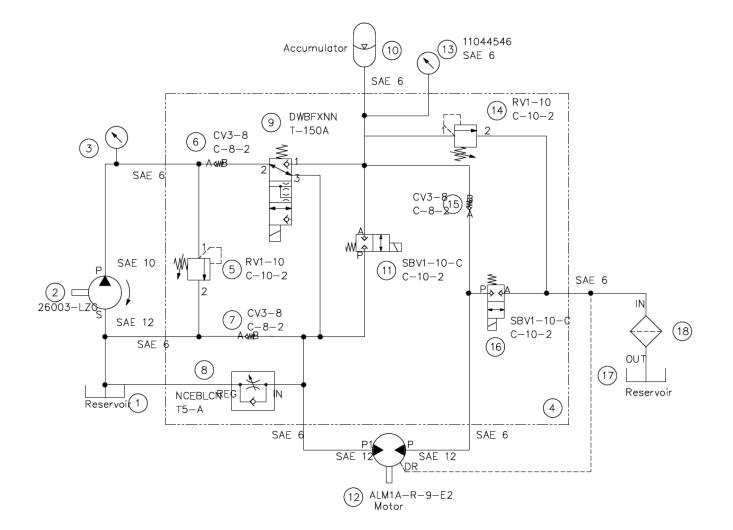


E

Stoker-Drive Cassette


Assembly Unaltered

- Selected tandem bike due to separation of hydraulic and mechanical systems
- Planned to use existing derailleur for gear shifting during operation



Hydraulic Circuit

Design Updates

- Feedback from midway review highlighted regen-braking issue
- Reservoir manufacturing challenges
- Pump unavailability/replacement pump discrepancies
- Transition to fixed wheel design

Pump Change

Original component selection: Eaton 26003

SunSource was unable to supply this pump (Notified on Feb. 4)

Last minute component change to Danfoss SP2NN pump

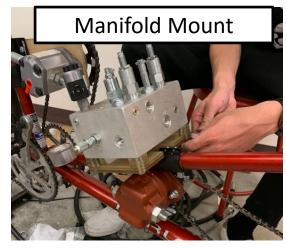
After receiving, learned the DU machine lacked resources to machine spline coupling

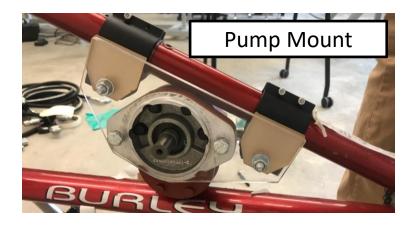
Final Decision: Re-use pump from the 2018 DU FPVC Team

	Eaton 26003 -LZG Original Pump	Danfoss SP2NN – Selected Pump	Eaton 26702-DAB Actual Used Pump
Displacement (CID)	0.58	0.513	0.54
Direction	CCW	CCW	Bi-Directional
Shaft Type	5/8" Keyed	9 tooth spline	5/8" Keyed

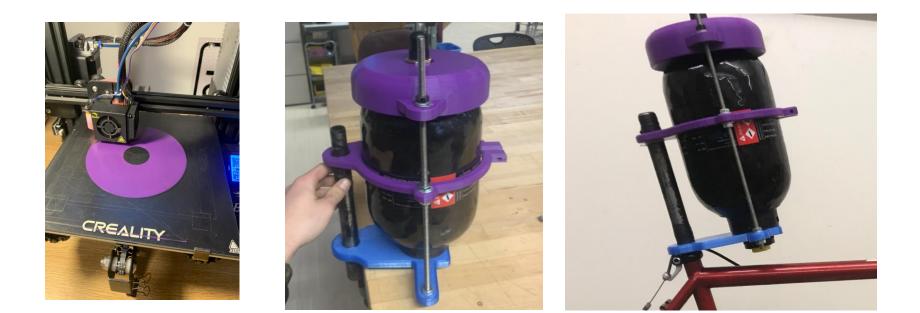
Pump and Motor Couplings

- Machined out of aluminum stock
- Designed to mate with bike sprockets




Accumulator, Pump, and Motor mounts

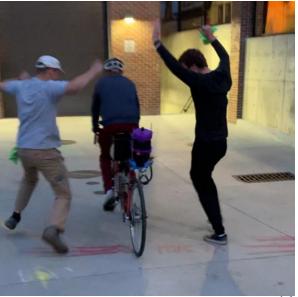
• Laser cut acrylic, secured with bike frame mounts



Accumulator Mount

• 3D printed to mount on stoker rider tube

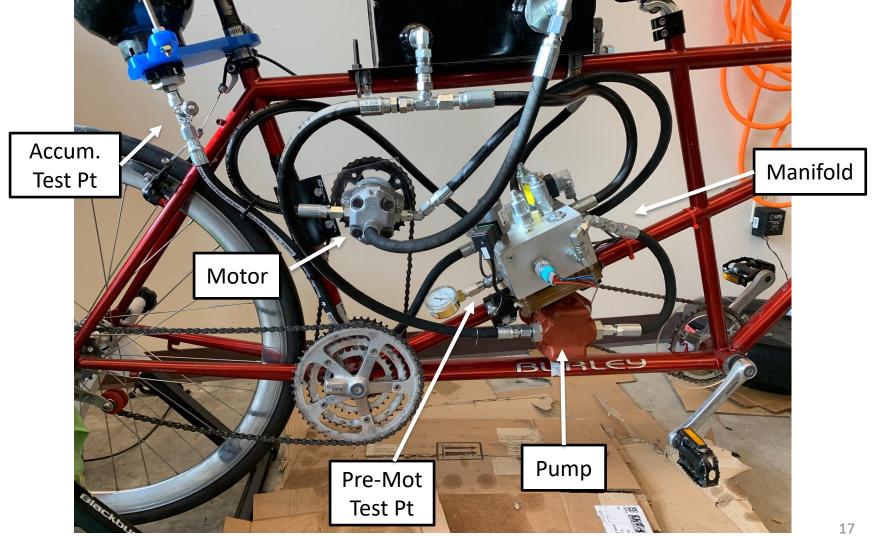
Initial Build



Testing

- Stationary bike stand used for proof-of-concept tests
 - Demonstrated all drive modes worked under zero load
- Performance tests done outside
 - Demonstrated proof of working vehicle
 - Realized issues with chain tensioning, re-machined pump coupling with tighter shaft fit,
 - Remade motor mount to include chain tensioning

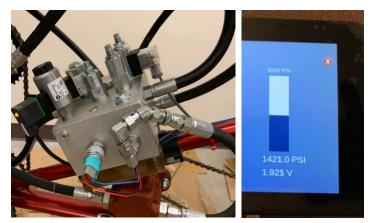
Final Vehicle

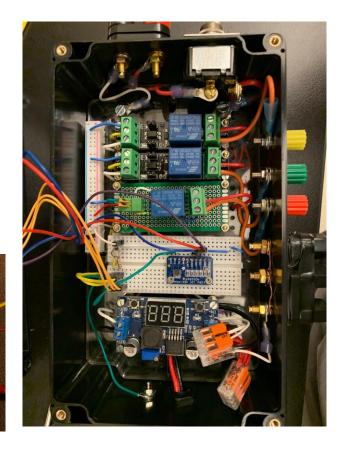


Final Vehicle -Hydraulics

Accumulator

- Parker charging kit
- Dry N2 from DU chemistry lab
- Tested accumulator + gauges simultaneously
 - Direct charge for ~2 minutes
 - Pressure gauge @ test point and
 - Transducer in manifold




Live readout on display

Electronics

- All circuitry in housing
 - Banana plugs for all external connections
 - Main power switch
 - 3 relay circuits for solenoid control
 - Buck converter for microcontroller
 - 16-bit ADC converter for transducer
- Control
 - Raspberry PI
 - 7" Touchscreen for display and drive mode control

Gearing

- Fixed wheel design for regen
- Can modify chain to 3 different stoker cassette settings
- Testing results from motor pressure guage:
 - Cruising: 1000-1500 psi
 - Acceleration/uphill: 2500-2750 psi

Motor – Stoker in (36T-40T)

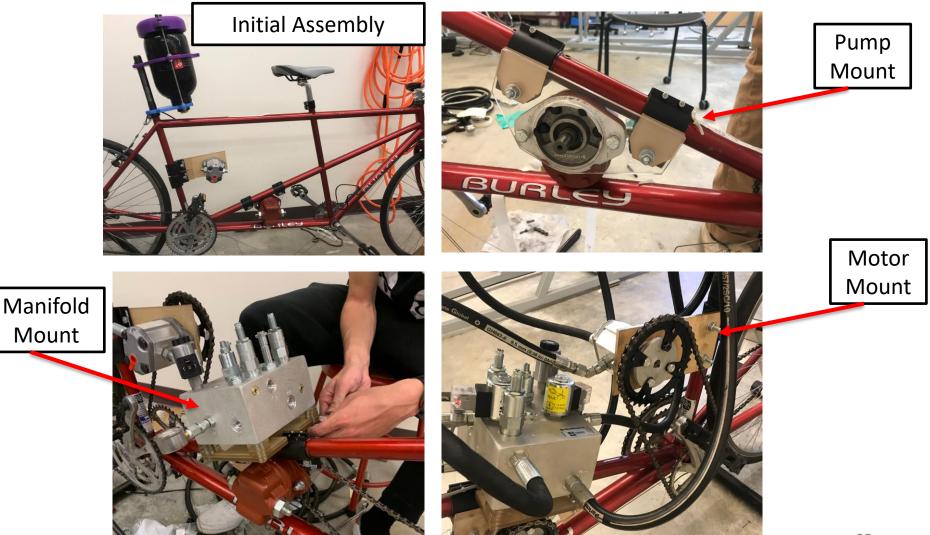
Stoker out – Rear Wheel (36,42,52 -22)

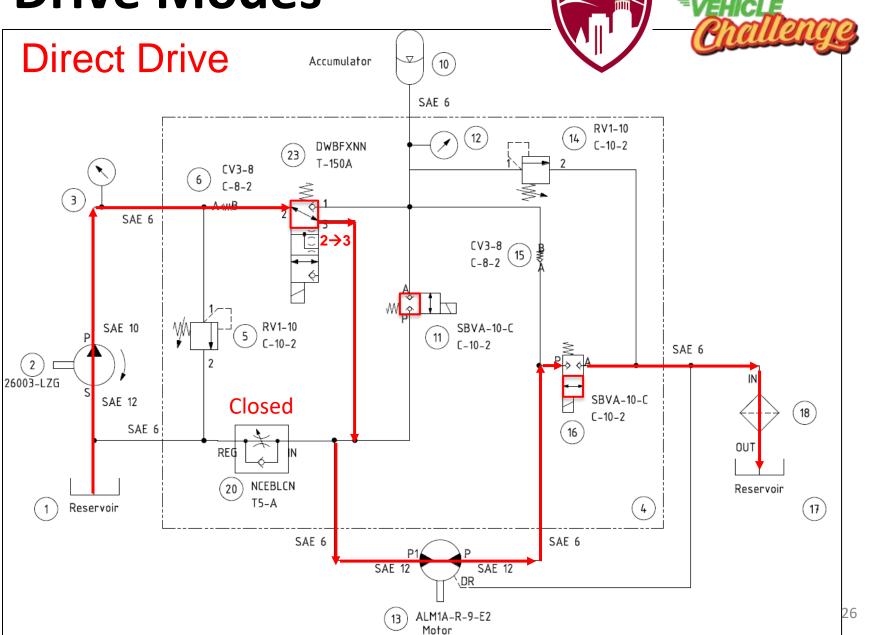
Lessons Learned

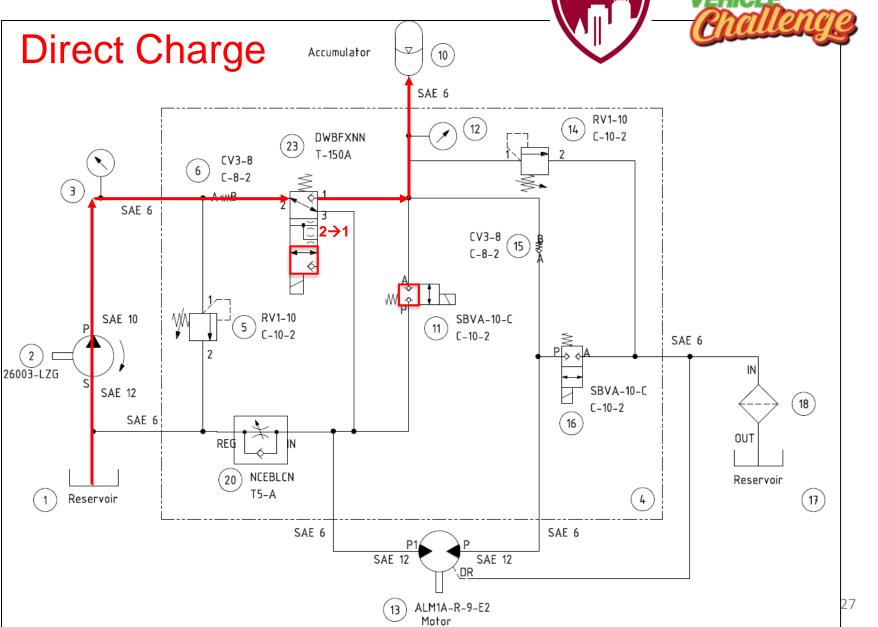
- Over-estimate part lead times and anticipate component unavailability
- Have a fabrication plan in place before component selection, including fittings and adapters
- Hydraulics fittings and industry standard threads/adapters are complicated
 - Focused too much on the theoretical aspects of the design rather than practical
- Should have put more time into learning the mechanisms of bicycle components: Derailers, chain tensioners, free vs fixed wheel hubs, etc...
- Start assembly and fabrication phase as soon as possible, do not put too much responsibility on third part manufacturers or suppliers

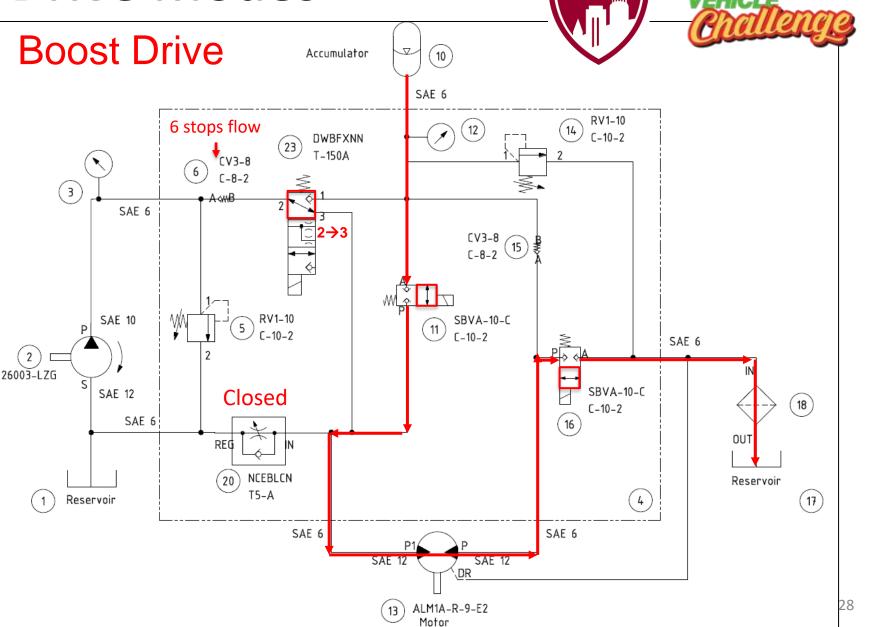
Questions?

Backup Slides



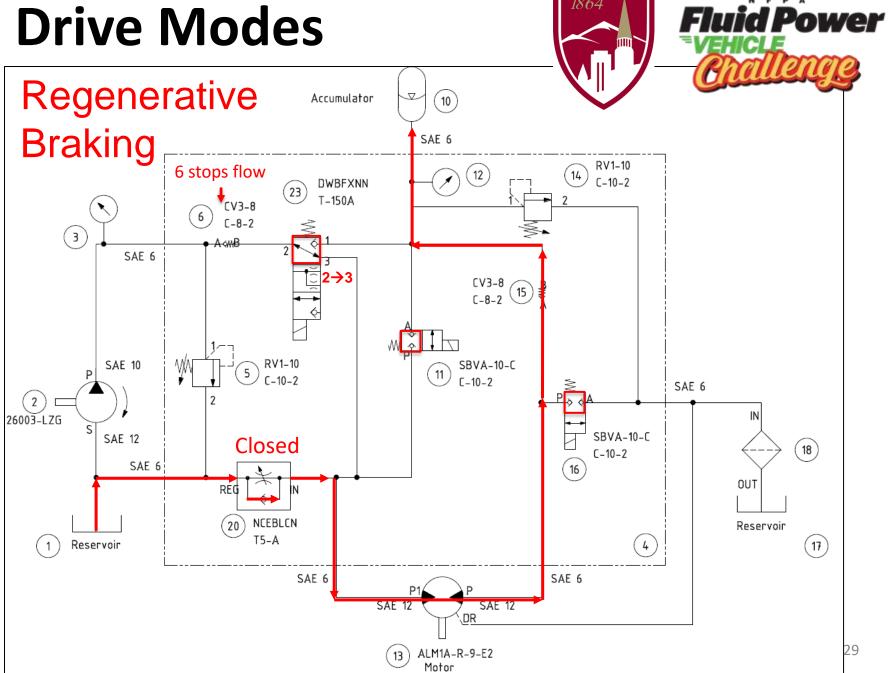




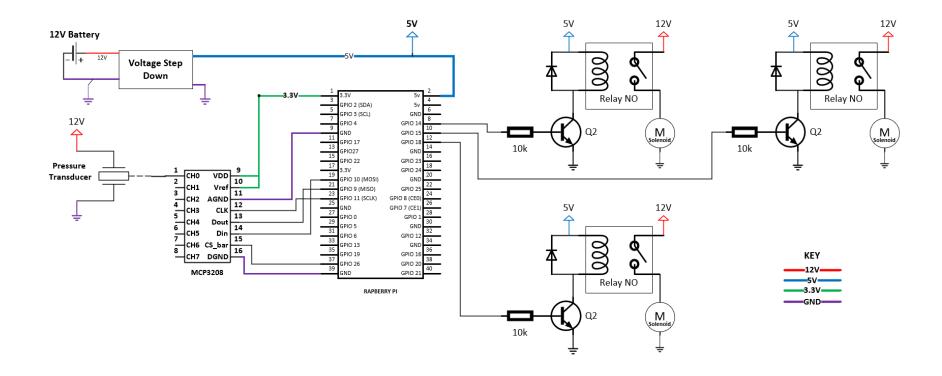


wid Power

J



uid Power


luid Power

J

EE Schematic

Human Performance Test

Test Goals	Determine peak and average rider output power					
Methods	 A 200 ft sprint with the unmodified bicycle (1:1 captain-stoker power transmission) Times recorded at 100 and 200 ft Videos recorded to observe pedal speed Several trials at different rear-cassette gear ratios to confirm power results 					
Results	 Avg power output 200-300 W Peak power output 1000+ W 					

Pump & Motor Calculations

Assumptions

Coeff of Rolling Resistance ¹	0.005	System Pressure	2750 psi
Grade	2 %	Hydraulic Circuit Efficiency	0.9
Human Power Output	500 W	Peak Rider Speed	35 mph
System Weight	290 lb		

Results

System Flow Rate	0.42 GPM
Motor CIR	0.388
Pump CIR	0.591

Part of Summary of Midway

Slides

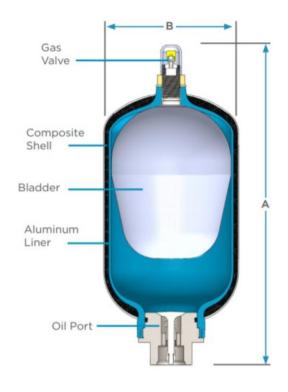
1) "Rolling Resistance." *Engineering ToolBox*, https://www.engineeringtoolbox.com/rolling-friction-resistance-d_1303.html.

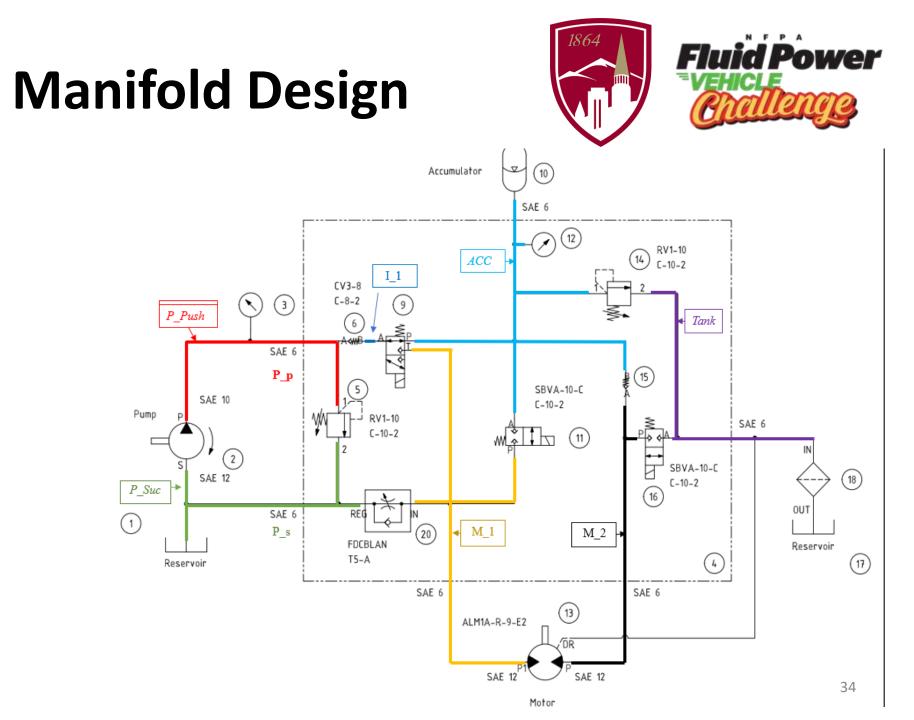
Hardware Selection

Motor

- Marzocchi ALM1A-R-9-E2
- .3878 CID bi-directional gear motor

Pump

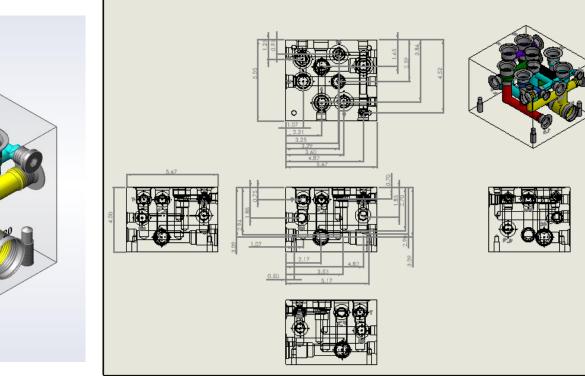

- Eaton 26003-LZG
- .58 CID CCW gear pump

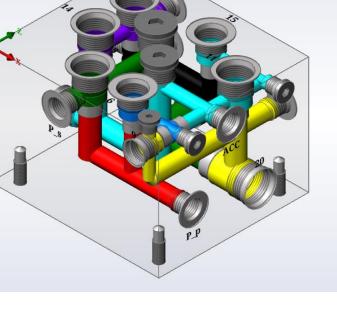


Should be Summary of Midway Slides

Accumulator

- Steelhead Composites AB30CN010G0N
- Composite 1 gal. accumulator





Manifold Design

- Custom Designed Manifold in Solidworks with MDTools
- Expecting approval by 1/7/22

Reservoir

- Custom Designed Aluminum reservoir (~1.5 gallons)
- Interior Baffling System and Flow Diffusers
- Breather Port and quick-fill/drainage ports
- Laser cut as one sheet to reduce welds and possible failure points
- Fabricated locally in *Denver, CO* by H&H Metals

Calculations 1/2

For Reference to Testi	ng
Wheel	
$d_w := 622$ 7	
$r_w \coloneqq \frac{d_w}{2} =$	0.311 <i>m</i>
Frame:	
Wheelbase:	$L_{wb} := 69.5 in$
Crank Height:	$h_c := 10.83 \ in$
Crank Length	$r_c = 7 in$
a1:	$a_1 = 37.01 \ in$
a2:	$a_2 \coloneqq L_{wb} - a_1 = 0.825 \ m$
COG Height	h := 24.49 in
Weights:	
Frame:	$W_f := 35 \ lbf$
Rider	$W_r \coloneqq 150 \ lbf$
Hydr.	$W_h \coloneqq 100 \ lbf$ W_{max}
Total:	$W_h = 100 \ tof$ $W_{sys} = W_f + W_r + W_h = 285 \ lbf$ $m_{sys} = \frac{W_{sys}}{g} = 129.274 \ kg$

	(Gearing	
Stocker Sprocket:	$N_s \coloneqq 40$	captain Sprocket:	$N_c \coloneqq 40$
	[30]	pump	$N_p := 20$
Stocker cassete	$N_{sr} \coloneqq \begin{bmatrix} 30 \\ 42 \\ 53 \end{bmatrix}$	Motor	$N_m := 40$
	$\begin{bmatrix} 11\\12\\14\\16\end{bmatrix}$	Rotational Characterstics	
Drive cassete	$N_{dr} := \begin{bmatrix} 18 \\ 18 \\ 21 \\ 24 \end{bmatrix}$	Stoker Setting i_s :	$= 1 N_{cs} := N_{s\tau_{i_s}} = 42$
	28 32	Drve Setting i_d	$= 6 N_{cd} := N_{dr_{i_d}} = 24$

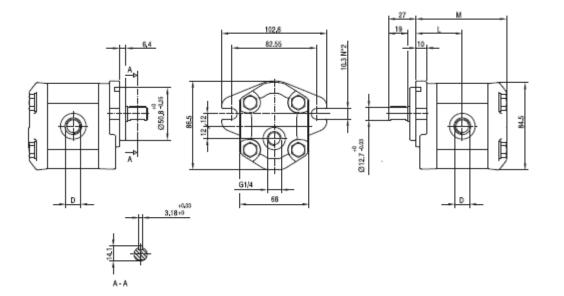
$gr \coloneqq \frac{2}{100}$	$\alpha \coloneqq \operatorname{asin}(gr) = 0.02$	$F_{pull} \coloneqq W_{sys} \cdot \sin(\alpha) = 25.355 \ N$
Rolling resistance	Crr := 0.005	$Fr \coloneqq Crr \cdot W_{sys} \cdot \cos\left(\alpha\right) = 6.337 \ N$
		$F_t := Fr + F_{pull} = 31.692 \ N$
		$T_w \coloneqq r_w \cdot F_t = 87.236 \ \textit{lbf} \cdot \textit{in}$
Power		
	S	peed, wheel, rider rpm
$Pkw \coloneqq 500 W$		V _{max} :=35 mph
$P_{sys} = 2750 \ psi$		$\omega_w \coloneqq \frac{V_{max}}{r_w} = 480.425 \ rpm$
$Q \coloneqq \frac{Pkw}{P_{even}} = 0.41$	8 <u>gal</u>	$\omega_r \coloneqq 90 \ rpm +$
P_{sys}	min	
$\eta \coloneqq 0.9$		

Calculations 2/2

			Forces		
		$gr \coloneqq \frac{2}{100}$	$\alpha = asin(gr) = 0.02$	$F_{pull} \coloneqq W_{sys} \cdot \sin \theta$	$n(\alpha) = 25.355 \ N$
		Rolling resistance	Crr := 0.005	$Fr := Crr \cdot W_{sys} \cdot co$	$s(\alpha) = 6.337 N$
				$F_t \! \coloneqq \! Fr \! + \! F_{pull} \! = \! 31$.692 N
				$T_w \coloneqq r_w \cdot F_t = 87.23$	36 lbf · in
		Power			
		$Pkw \coloneqq 500 W$		eed, wheel, rider rp V _{max} ≔35 mph	om
		$P_{sys} \coloneqq 2750 \ p$		$\omega_w \coloneqq \frac{V_{max}}{r} = 480.425$	rpm
		$Q \coloneqq \frac{Pkw}{P_{sys}} = 0.$		ωr_w $\omega_r \coloneqq 90 \ rpm$ +	
		$\eta := 0.9$			
Stoker Cassete	$\omega_{cs} \coloneqq \omega_w \cdot \frac{N_{cd}}{N_{cs}} =$	274.528 rpm			D7
			Pu	ımp	$\omega_p \coloneqq \omega_r \cdot \frac{N_c}{N_p} = 180 \ rpm$
	$T_{cs} \coloneqq T_w \cdot \frac{N_{cs}}{N_{cd}} =$	152.662 <i>in • lbf</i>			
	IN _{cd}				$CIR_p \coloneqq CIR_m \cdot \frac{\omega_m}{\omega_n} = 0.591 \ in^3$
Motor	$\omega_m \coloneqq \omega_{cs} \cdot \frac{N_s}{N_m} =$	274.528 rpm			D P
	$m \sim N_m$	-			$T_p \coloneqq CIR_p \cdot \frac{P_{sys}}{2 \cdot \pi} \cdot \eta = 232.834 \text{ in \cdot lbf}$
	$T_m \coloneqq T_{cs} \cdot \frac{N_m}{N_c} =$	152.662 <i>in•lbf</i>			$T_r \coloneqq T_p \cdot \frac{N_c}{N_r} = 465.669 \ lbf \cdot in$
					p N_{p}
	$CIR_m \coloneqq \frac{2 \cdot \pi \cdot T}{P_{sus} \cdot r}$	$\frac{m}{n} = 0.388 \ in^3$			$T_r = 52.614 \ N \cdot m$

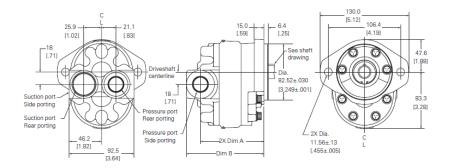
Accumulator

Nominal Volume	Operating Pressure	Dimension A	Dimension B	Weight
1 gal	3000 psi	15.7 in	6.5 in	10.8 lbs



- Carbon fiber lightweight reservoir from Steelhead Composites in Golden, CO

Pump Specs


E2-means external drain

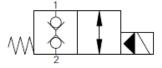
TIPO	CILINDRATA	PORTATA a 1500 girl/min			VELOCITÀ MASSIMA		DIMENSIONI		
TYPE	DISPLACEMENT	FLOW at 1500 rev/min	MAX PRESSURE P1 PC PP		MAX SPEED	L	DIMENSIONS		
	cm³/giro (cm³/rev)	litri/min (litres/min)	bar	bar	bar	giri/min (rpm)	mm	mm	
ALM1A-R-4-E1	2,8	3,9	250	240	270	5000	44	86,5	3/4-16 UNF
AIM1A-R-5-E1	3,5	4,9	250	240	270	5000	45	88,5	3/4-16 UNF
AIM1A-R-6-E1	4,1	5,9	250	240	270	4000	46	90,5	3/4-16 UNF
ALM1A-R-7-E1	5,2	7,4	230	220	245	3500	47,5	93,5	3/4-16 UNF
ALM1A-R-9-E1	6,2	8,8	230	220	245	3000	49	96,5	3/4-16 UNF

Motor

Displacement cm²/r [in²/r]	6,6	8,2	9,5
	[.40]	[.50]	[.58]
Max. Intermittent pressure bar [PSI]	241	241	241
	[3500]	[3500]	[3500]
Rated speed (RPM)	3600	3600	3600
Minimum output flow at 207 bar [3000 PSI]	20,1	25,0	29,5
and rated speed LPM [GPM]	[5.3]	[6.6]	[7.8]
Input power at 207 bar [3000 PSI] and	9,7	11,9	14,1
rated speed and cont. Pressure kW [HP]	[13.0]	[15.9]	[18.9]

Model	26001	26002	26003	26004	26005	26006	26007
Displacement (cm³/r [in³/r])	6.6 [.40]	8.2 [.50]	9.5 [.58]	10.8 [.66]	13.8 [.84]	16.7 [1.02]	19.7 [1.20]
Dimension A (mm [in])	72.6 [2.86]	74.3 [2.93]	75.9 [2.99]	77.5 [3.05]	80.7 [3.18]	83.9 [3.30]	87.1 [3.43]
Dimension B (mm [in])	93.2 [3.67]	94.9 [3.74]	96.5 [3.80]	98.1 [3.86]	101.3 [3.99]	104.5 [4.11]	107.7 [4.24]

Model 26003 - 9,5 cm³/r [.58 in³/r] displacement


26003-RZG	26003-LZG	5/8 Keyed	Side	7/8-14 UNF-2B	1-1/16-12 UN-2B	24302-RZB/LZB
26003-RZH	26003-LZH	5/8 Keyed	Rear	7/8-14 UNF-2B	1-1/16-12 UN-2B	24302-RZC/LZD
26003-RZJ	26003-LZJ	5/8 9 T Spline	Side	7/8-14 UNF-2B	1-1/16-12 UN-2B	24302-RZA/LZA
26003-RZK	26003-LZK	5/8 9 T Spline	Rear	7/8-14 UNF-2B	1-1/16-12 UN-2B	24302-RZD/LZE

SBV1-10-C

SBV1-10-C - Solenoid Valve

2-way, 2-position, normally closed, bi-directional, poppet type solenoid valve 76 L/min (20 USgpm) • 210 bar (3000 psi)

Operation

In the de-energized position the valve is blocked in both directions.

Features

Hardened and ground working parts. Lapped seat for low leakage. IP69K Tough coil compatibility. Continuously rated. Compact design with low pressure drop. 210 bar working pressure.

Sectional View

Ratings and Specifications

Performance Data

Performance data is typical with fluid at 21,8 cST (10	5 SUS) and 49°C (120°F)
Typical application pressure (all ports)	210 bar (3000 psi)
Cartridge fatigue pressure (infinite life)	210 bar (3000 psi)
Rated flow	76 L/min (20 USgpm)
Internal leakage	5 drops/min, max @ 210 bar (3000 psi)
Temperature range	-40° to 100°C (-40° to 212°F)
Coil duty	Continuous from 85% to 110% of nominal voltage
Cavity	C-10-2
Fluids	All general purpose hydraulic fluids such as: MIL-H-5606, SAE 10, SAE 20 etc.
Filtration	Cleanliness code 18/16/13
Housing material (standard)	Aluminum or steel
Weight cartridge only	0,18 kg (0.39 lbs)
Seal kit	565806 (Buna-N), 889627 (Viton®)

When the solenoid is

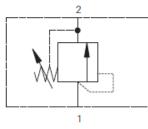
both directions.

energized the pilot poppet

is released from the seat

allowing the main poppet to open. A series of internal

check valves allows full flow in


Viton is a registered trademark of E.I. DuPont

RV1-10

RV1-10 - Relief Valve

Poppet, Direct Acting 30 L/min (8 USgpm) • 210 bar (3000 psi)

Operation

This valve remains closed from port 1 to port 2 until the predetermined setting has been reached at port 1.

Features

Fast acting, low pressure rise. Low internal leakage, high flow rate for compact design

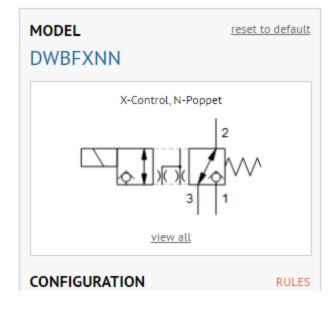
Sectional View

Performance Data Ratings and Specifications

2	

Performance data is t
Typical application pr
Cartridge fatigue pres
Rated flow

Performance data is typical with fluid at 21,8 cSt	(105 SUS) and 49° C (120° F)
Typical application pressure (all ports)	210 bar (3000 psi)
Cartridge fatigue pressure (infinite life)	210 bar (3000 psi)
Rated flow	30 L/min (8 USgpm)
Internal leakage	0.3 L/min (5 drops/min) @ 85% of Pressure Setting
Cavity	C-10-2
Standard housing materials	Aluminum or steel
Temperature range	-40° to 120°C (-40° to 248°F)
Fluids	All general purpose hydraulic fluids such as: MIL–H–5606, SAE 10, SAE 20, etc.
Filtration	Cleanliness Code 18/16/13
Weight cartridge only	0,22 kg (0.48 lbs)
Seal kits	565803 Buna–N 566086 Viton*


The poppet is unseated and

allows flow out of port 2.

Viton is a registered trademark of E.I. DuPont

DWBFXNN

FLeX Series 3-way, direct-acting, solenoid-operated directional blocking poppet valve

Cavity	<u>T-150A</u>
Series	<u>0</u>
Capacity	6 gpm
Maximum Operating Pressure	5000 psi
Maximum Valve Leakage at 110 SUS (24 cSt)	0.004 in³/min.@5000 psi
Response Time - Typical	50 ms
Switching Frequency	10,000 max. cycles/hr
Solenoid Tube Diameter	.63 in.
Valve Hex Size	3/4 in.
Valve Installation Torque	25 - 30 lbf ft
Model Weight	1.03 lb.
U.S. Patent #	10,302,201
Seal kit - Cartridge	Buna: <u>990150007</u>
Seal kit - Cartridge	Viton: <u>990150006</u>
Seal and nut kit - Coil	Viton: <u>990740006</u>

NCEBLCN

5	un hydrauli	NCEB	Fully adjustable needle valve with reverse flow check SERIES 2 / CAPACITY: 12 gpm (.25 inch) / CAVITY: T-5A	
со		2	2.34(59.43) LOCATING SHOULDER	snhy.com/NCEB
L	Control	Standard Screw Adjustment	Needle valves with reverse-flow check are fully adjustable orifices used to regulate flow. They a adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity check	
C	Control Reverse Flow Check		adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity chec unrestricted flow from port 2 to port 1. They are not pressure compensated.	k valve provides
C	Reverse Flow	Adjustment	adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity chec	k valve provides
N	Reverse Flow Check	Adjustment 30 psi (2 bar)	adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity chec unrestricted flow from port 2 to port 1. They are not pressure compensated.	k valve provides
N	Reverse Flow Check Seal Material	Adjustment 30 psi (2 bar) Buna-N	adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity check unrestricted flow from port 2 to port 1. They are not pressure compensated. TECHNICAL DATA NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFI	k valve provides GURATION SECTION
N	Reverse Flow Check Seal Material	Adjustment 30 psi (2 bar) Buna-N	adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity check unrestricted flow from port 2 to port 1. They are not pressure compensated. TECHNICAL DATA NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFI Maximum Operating Pressure 5000 p	k valve provides GURATION SECTION
N	Reverse Flow Check Seal Material	Adjustment 30 psi (2 bar) Buna-N	adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity check unrestricted flow from port 2 to port 1. They are not pressure compensated. TECHNICAL DATA NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFI Maximum Operating Pressure 5000 p Maximum Valve Leakage at 110 SUS (24 cSt) 10 drop	k valve provides IGURATION SECTION. Isi ps/min.
N	Reverse Flow Check Seal Material	Adjustment 30 psi (2 bar) Buna-N	adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity check unrestricted flow from port 2 to port 1. They are not pressure compensated. TECHNICAL DATA NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFI Maximum Operating Pressure 5000 p Maximum Valve Leakage at 110 SUS (24 cSt) 10 drop Adjustment - No. of CCW Turns from Fully Closed to Fully Open 5	k valve provides IGURATION SECTION. Isi ps/min.
N	Reverse Flow Check Seal Material	Adjustment 30 psi (2 bar) Buna-N	adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity check unrestricted flow from port 2 to port 1. They are not pressure compensated. TECHNICAL DATA NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFI Maximum Operating Pressure 5000 p Maximum Valve Leakage at 110 SUS (24 cSt) 10 drog Adjustment - No. of CCW Turns from Fully Closed to Fully Open 5 Locknut Hex Size 9/16 in Locknut Torque 80 - 90	k valve provides IGURATION SECTION Isi ps/min.
N	Reverse Flow Check Seal Material	Adjustment 30 psi (2 bar) Buna-N	adjustable from fully closed up to the maximum orifice diameter. An integral high-capacity check unrestricted flow from port 2 to port 1. They are not pressure compensated. TECHNICAL DATA NOTE: DATA MAY VARY BY CONFIGURATION. SEE CONFI Maximum Operating Pressure 5000 p Maximum Valve Leakage at 110 SUS (24 cSt) 10 drop Adjustment - No. of CCW Turns from Fully Closed to Fully Open 5 Locknut Hex Size 9/16 in Locknut Torque 80 - 90 Seal kit - Cartridge Buna: 10	k valve provides IGURATION SECTION Isi ps/min.