

FINAL PRESENTATION
Michigan Technological
University
David Wanless
4/21/2022



#### **Team Introductions**



Members: Derek Flory, Hunter Ransom, Erika Gabriel,

**Brittney Phillips** 

Faculty advisor: Dave Wanless

Mentors: Courtney Castelic





## **Midway Summary**



- Tricycle Frame to increase stability and lower mass of hydraulic system
- Update hydraulic system to decrease losses and improve efficiency
- Optimize gear ratios to pump and rear axle
- Incorporate hydraulic manifold



## **Final Objectives**



- Design the physical layout of the bike
- Implement layout design
- Install fixtures to mount the design
- Test operation of bike
- Ensure all safety requirements are met
- Make adjustments where needed

## **Hydraulic Schematic**



- Less valves

   creating a more
   simple
   operation
- Three phases
  - Direct Drive
  - AccumulatorDrive
  - Regeneration (Braking)



### **Manifold**



- Use of a manifold decreases loss through unnecessary hoses and greatly simplifies the circuit design.
  - Our manifold is fitted with a relief valve to regulate the pressure in the system and a needle valve to bleed the system and release any excess pressure without powering the motor.



### **Final Schematic**



- Supply lines ½"
  - Flow velocity < 4 ft/sec</li>
- Pressurized lines 3/8"
  - Flow velocity < 15 ft/sec</li>



# **Analysis**

Fluid Power
VEHICLE
Challenge

- Automation Studio Simulations







Direct Drive

Accumulator Drive

Regenerative Braking

### **Vehicle Construction**



#### **Layout Process**

- Accounted for all needed components
- Drafted basic layout and mocked up positioning
- Finalized design and made order for hoses and fittings







### **Vehicle Construction**



#### **Early Progress**

- Focused on mounting components and routing lines
- Placed valves in locations to promote operator comfort







## **Vehicle Construction**



#### Welding

- Mig
- Difference in materials
- Number of welding points: 16
  - 12 component to frame
  - 4 component to component



## **Testing**



- Proof of Working Vehicle
  - walk through functions of vehicle and verify proper function
- Test reliability of construction
  - endurance testing to find weak points
  - Ensure operator comfort and ease of use
- Make adjustments where necessary
  - Redesign or implement solutions to unforeseen design flaws

#### **Chain Drives**



#### Chain tension

- Rear chain drive failure when regenerative braking: Slack side becoming tension side
- Alignment issues: Chain popping off motor gear

#### Solutions

- Added location for set screw on shaft gear
- Added shim on motor mount to correct alignment
- Added tensioner for each chain







## **Pedaling**



- Inconsistent pedaling force
  - Poor Operator comfort
  - Poor Efficiency
- Added pedal straps and new aluminum pedals to provide a smoother and more comfortable ride.





## **Final Product**



