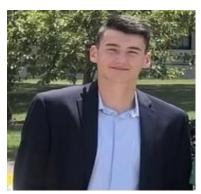


NFPA Education and Technology Foundation FINAL PRESENTATION West Virginia University Institute of Technology Dr. Yogendra Panta 4/21/2022

Agenda

- Team Introductions
- Objectives
- Midway Review
- Vehicle Design
 - Preliminary work
 - Selection of Hardware
 - Hydraulics System
 - Pneumatics System
- Vehicle Construction
- Results and Analysis
- Final Vehicle & Testing
- Lessons Learned
- Acknowledgments


Meet the Team

Antonio Fernández Castaño

Jacob Cross

Matthew Lanzer

Gregory Panther

Kerry Smith

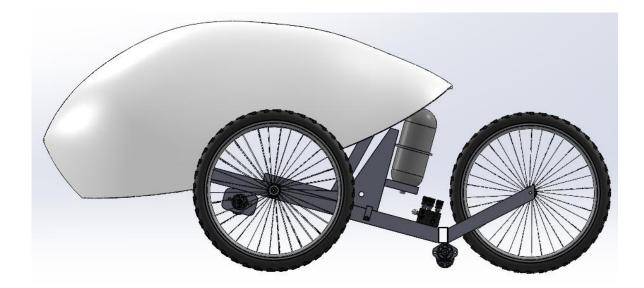
Charles White

Design Objectives

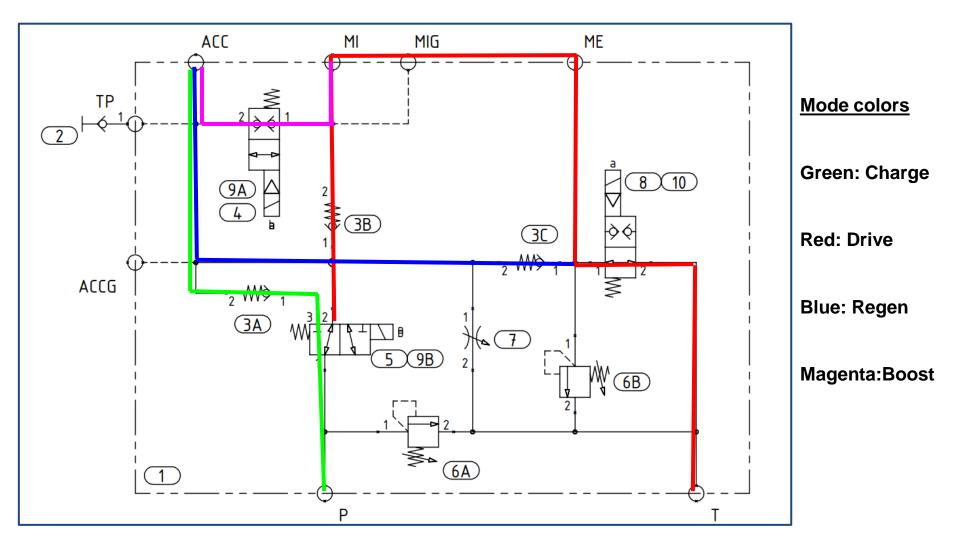
- Operating pressure: 1000 psi
- Vehicle Weight: 110 lbs.
- Drag Coefficient: 0.6
- Maximum Velocity: 15 mph
- Sprint Challenge: 600 ft in 30 sec
- Endurance Challenge: 5280 ft in 6 min
- Efficiency Challenge: 500 ft

Midway Review

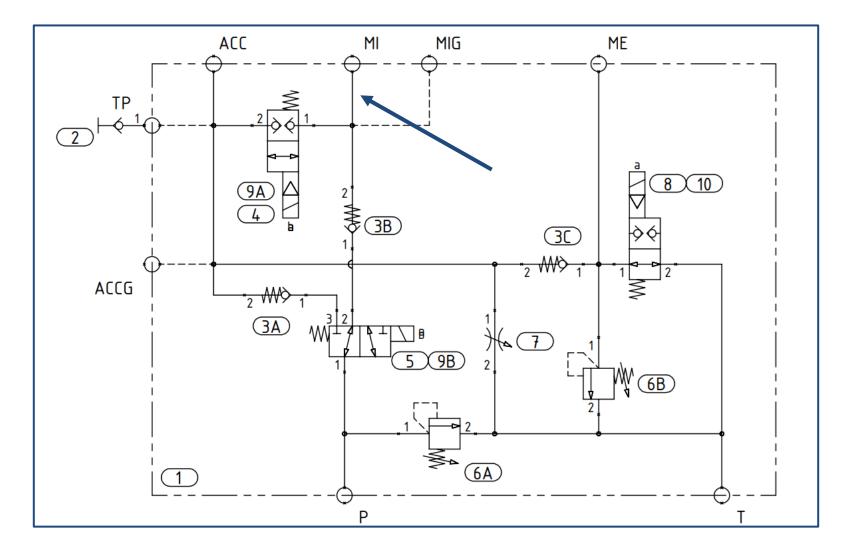
3.6/5.0 on midway presentation
highest rating compared to prior years
records


- Changes after midway review
 - Added an external check valve to the motor inlet
 - Added a 4-way valve for the Pneumatic System

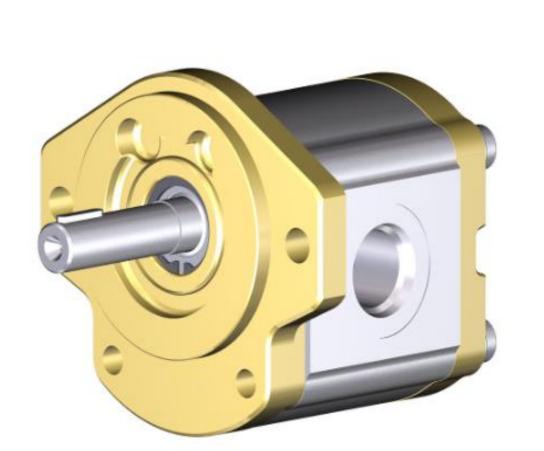
Midway Review Cont...


Vehicle Design Components (Hardware)

- Frame
- Steering
- Brakes
- Drivetrain
- Hydraulics
- Pneumatics
- Windshield
- Electronics


Hydraulic Circuit Design

Hydraulic modifications


External Check valve

Selection of Hydraulic Components -1/2 (Motor)

Bosch rexroth

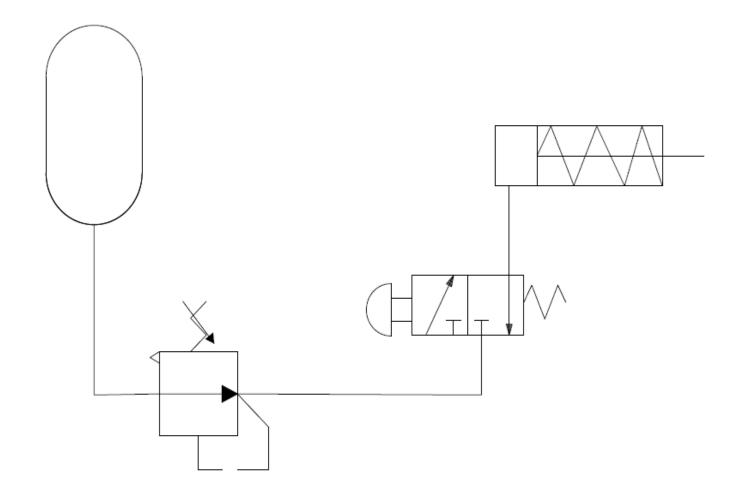

Gear type

1.159 In³/rev

Bi directional

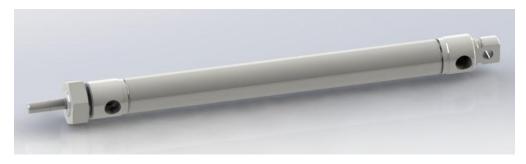
Selection of Hydraulic Components -2/2 (Pump)

Bosch rexroth


Gear type

2.441 In³/rev

Clockwise rotation


Pneumatic Circuit Design

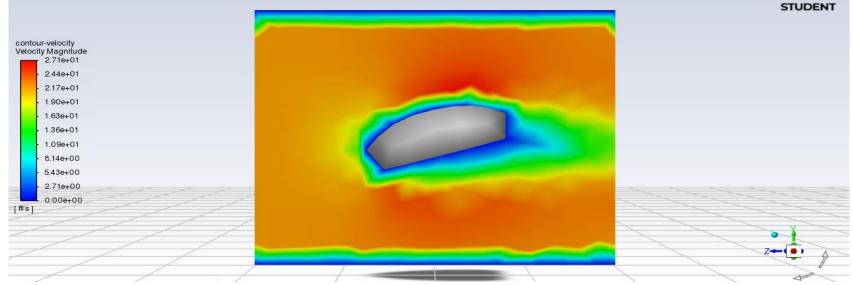


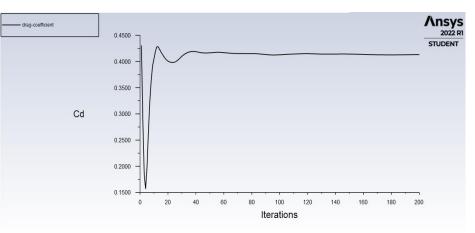
Selection of Pneumatic Fluid Components w/specifications

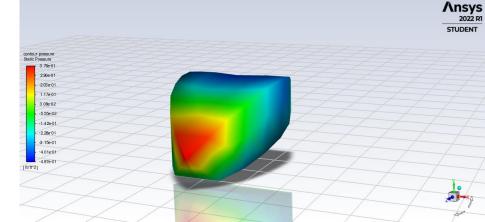
Cylinder: Double acting, ¾" bore, 6" stroke <u>Reservoir</u>: 2.5" bore x 8" length <u>Valve</u>: 5 port- 2 position, 12V Double Solenoid <u>Regulator</u>: ¼" NPT ports

ower

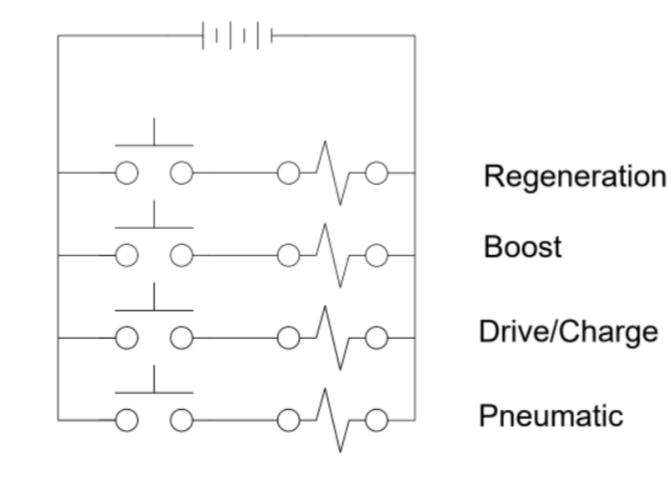
Application of Pneumatics


System is capable of lifting the designed load of 10 lbf.

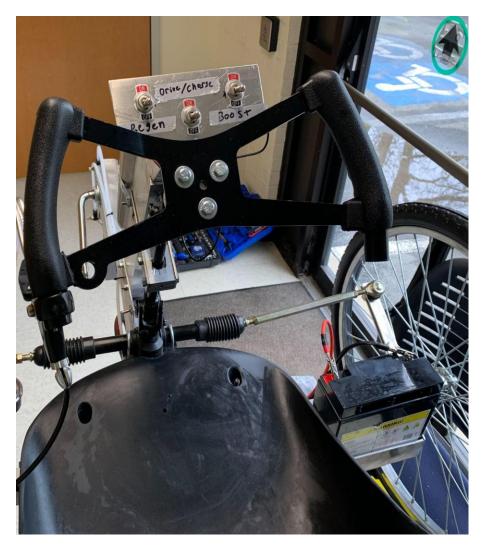



Design of Windshield w/ CFD Analysis

Ansys 2022 R1



Electronics Circuit Design

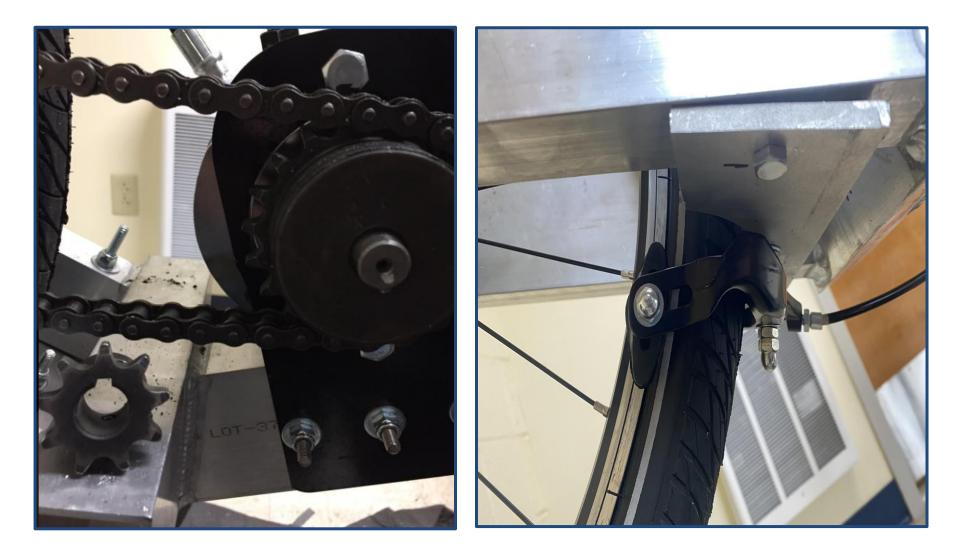

Selection of Electronics Components

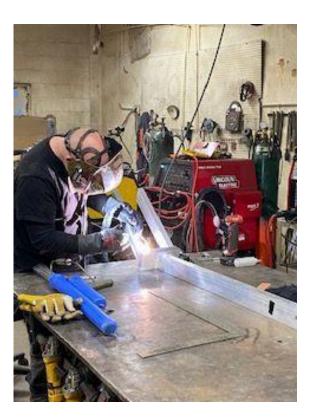
Battery: 12V 18Ah Sealed Lead Acid (SLA), Rechargeable.

Switches: Heavy Duty Rocker Toggle 20A 12V

<u>Wires:</u> Copper. AWG 10,18, and 30. High temperature resistance 200 degree C, Low temperature resistance,in extreme cold -60 degree C.Rated Voltage: 600 volts

Steering Design

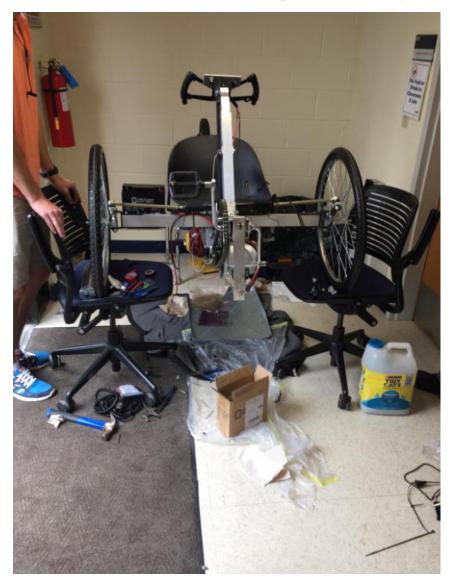



Gear and Brake design

Vehicle Construction 1/3

Vehicle Construction 2/3





Vehicle Construction 3/3

Expense Report

Pump/Motor	\$ 1,308.00
Valves/fittings/Pressure Gauges	\$ 993.51
Frame Materials/Manufacturing	\$ 1,904.00
Wheels/Steering	\$ 543.13
Electronics	\$ 253.19
Pneumatics	\$ 53.18
Windshield Materials/Manufacturing	\$ 81.63
Total Cost	\$ 5,136.64

Vehicle Testing Clip

Final Vehicle and Future Improvement

The vehicle is fully -constructed and is operational. All systems including hydraulic, pneumatic, and electronic components are interconnected and all circuits work properly.

Improvements to make:

- Ergonomics
- weight reduction
- component selection
- tighter turning radius

Lessons Learned

- Learning experience in fluid power education and its application to the construction of fluid vehicle
- Opportunity to meet industry professionals
- Adaptability and first-hand machining experience
- The value of time management and troubleshooting
- Always have a team member double check work
- Check for Component compatibility and Harmonization
- Fabrication/Construction without a proper access to workshop

Acknowledgements

National Fluid Power Association Dr. Yogen Panta (WVUIT Team Advisor) Dr. Winnie Fu (WVUIT Academic Advisor) Dr. Bernhard Bettig (WVUIT Academic Advisor) Dr. Kenan Hatipoglu (WVUIT Academic Advisor) Dr. Guillermo Hahn (WVUIT Academic Advisor) WVUIT Student Government Association Karen Skaggs (WVUIT Engineering Secretary) Kevin Simmons (Janitor at Classroom Building) Ernie Parker (NFPA Mentor) Kevin Lingenfelter (Industry Mentor) Stephanie Scaccianoce (NFPA Contact) Jeff McCarthy (SunSource) Pam Wieczorek (SunSource) Kent Sowatzke (Bimba) Cameron Stevens (Tiefenbach Representative) Jason Justice (Fabrication Consultant/Welder) Zach Lockhart (Fabrication Consultant/Welder)

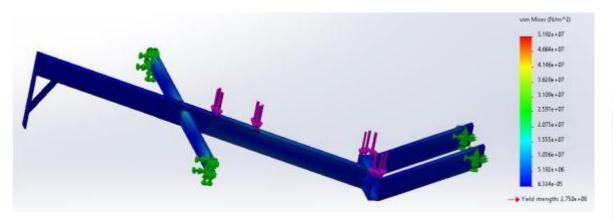
Questions?

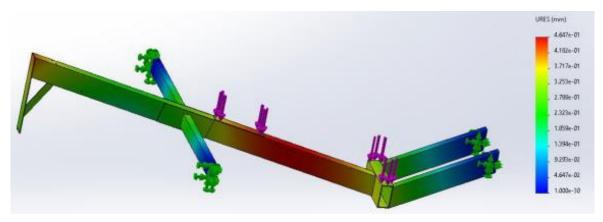
Pneumatics Analysis

Operating Pressure (psi)	Bore Size (in)	Area (in^2)	Stoke Length (in)	Lift Force Applied (Ib)	Volume of Cylinder (in^3)	Volume per Stroke @ Operating Pressure (in^3)
50	0.75	0.4417864669	6	22.08932335	2.650718801	9.01850436
60	0.75	0.4417864669	6	26.50718801	2.650718801	10.8222052
70	0.75	0.4417864669	6	30.92505268	2.650718801	12.625906
80	0.75	0.4417864669	6	35.34291735	2.650718801	14.4296069
90	0.75	0.4417864669	6	39.76078202	2.650718801	16.2333078
100	0.75	0.4417864669	6	44.17864669	2.650718801	18.03700872
50	1.0625	0.8866408954	6	44.33204477	5.319845372	18.09963722
60	1.0625	0.8866408954	6	53.19845372	5.319845372	21.7195646
70	1.0625	0.8866408954	6	62.06486268	5.319845372	25.3394921
80	1.0625	0.8866408954	6	70.93127163	5.319845372	28.9594195
90	1.0625	0.8866408954	6	79.79768059	5.319845372	32.57934
100	1.0625	0.8866408954	6	88.66408954	5.319845372	36.19927444
50	1.25	1.22718463	6	61.35923152	7.363107782	25.05140
60	1.25	1.22718463	6	73.63107782	7.363107782	30.061681
70	1.25	1.22718463	6	85.90292412	7.363107782	35.071961
80	1.25	1.22718463	6	98.17477042	7.363107782	40.082241
90	1.25	1.22718463	6	110.4466167	7.363107782	45.092521
100	1.25	1.22718463	6	122.718463	7.363107782	50.10280
50	1.5	1.767145868	6	88.35729338	10.60287521	36.0740174
60	1.5	1.767145868	6	106.0287521	10.60287521	43.2888209
70	1.5	1.767145868	6	123.7002107	10.60287521	50.5036244
80	1.5	1.767145868	6	141.3716694	10.60287521	57.718427
90	1.5	1.767145868	6	159.0431281	10.60287521	64.9332313
100	1.5	1.767145868	6	176.7145868	10.60287521	72.1480348
100	110	2				

Pneumatics Analysis

ANK SELECTION						
Operating Pressure (psi)	Bore Size (in)	Area (in^2)	Stroke (in)	Volume of Tank (in^3)	Total Volume @ Operating Pressure (in^3)	
100	2.5	4.908738521	6	29.45243113	58.90486225	
95	2.5	4.908738521	6	29.45243113	55.95961914	
90	2.5	4.908738521	6	29.45243113	53.01437603	
100	2.5	4.908738521	8	39.26990817	78.53981634	
95	2.5	4.908738521	8	39.26990817	74.61282552	
90	2.5	4.908738521	8	39.26990817	70.68583471	
100	2.5	4.908738521	10	49.08738521	98.17477042	
95	2.5	4.908738521	10	49.08738521	93.2660319	
90	2.5	4.908738521	10	49.08738521	88.35729338	
100	2.5	4.908738521	12	58.90486225	117.8097245	
95	2.5	4.908738521	12	58.90486225	111.9192383	
90	2.5	4.908738521	12	58.90486225	106.0287521	
100	3	7.068583471	6	42.41150082	42.41150082	
95	3	7.068583471	6	42.41150082	40.29092578	
90	3	7.068583471	6	42.41150082	38.17035074	
100	3	7.068583471	8	56.54866776	56.54866776	
95	3	7.068583471	8	56.54866776	53.72123438	
90	3	7.068583471	8	56.54866776	50.89380099	
100	3	7.068583471	10	70.68583471	70.68583471	
95	3	7.068583471	10	70.68583471	67.15154297	
90	3	7.068583471	10	70.68583471	63.61725124	


Pneumatics Analysis


			50 PSI Cyli	nder Operation			
Number of Actuations	Tank Pressure (psi)	Cylinder Pressure (psi)	Tank Volume (in^3)	Tank Volume @ Operating Pressure (in^3)	Volume of Cylinder (in^3)	Volume of Cylinder @ Operating Pressure (in^3)	Cylinder Force (lb
0	100	50	39.26990817	78.53981634	2.650718801	9.018504358	22.089323
1	88.51728362	50	39.26990817	69.52131198	2.650718801	9.018504358	22.089323
2	77.03456723	50	39.26990817	60.50280762	2.650718801	9.018504358	22.089323
3	65.55185085	50	39.26990817	51.48430327	2.650718801	9.018504358	22.089323
4	54.06913447	50	39.26990817	42.46579891	2.650718801	9.018504358	22.089323
5	42.58641808	42.58641808	39.26990817	33.44729455	2.650718801	7.681315942	18.814103
6	27.94202453	27.94202453	39.26990817	25.76597861	2.650718801	5.0399054	12.344408
7	14.74738478	14.74738478	39.26990817	20.72607321	2.650718801	2.659987078	6.5151950
8	6.784521176	6.784521176	39.26990817	18.06608613	2.650718801	1.223724676	2.99730
			40 PSI Cyli	nder Operation			
han faith at				Tank Volume @		Volume of Cylinder	
nper of Actuations	Tank Pressure (psi)	Cylinder Pressure (psi)	Tank Volume (in^3)	Operating Pressure (in^3)	Volume of Cylinder (in^3)	@ Operating Pressure (in^3)	Cylinder Force (lk
nber of Actuations	Tank Pressure (psi)	Cylinder Pressure (psi)	Tank Volume (in^3) 39.26990817	Operating Pressure		@ Operating	Cylinder Force (II
				Operating Pressure (in^3)	(in^3)	@ Operating Pressure (in^3)	
0	100 92.65106151	40	39.26990817	Operating Pressure (in^3) 98.17477043	(in^3) 2.650718801	@ Operating Pressure (in^3) 7.214803487	17.67145 17.67145
0	100 92.65106151 85.30212303	40	39.26990817 39.26990817	Operating Pressure (in^3) 98.17477043 90.95996694	(in^3) 2.650718801 2.650718801	@ Operating Pressure (in^3) 7.214803487 7.214803487	17.67145 17.67145 17.67145
0 1 2	100 92.65106151 85.30212303	40 40	39.26990817 39.26990817 39.26990817	Operating Pressure (in^3) 98.17477043 90.95996694 83.74516345	(in^3) 2.650718801 2.650718801 2.650718801	@ Operating Pressure (in^3) 7.214803487 7.214803487 7.214803487	17.67145
0 1 2 3	100 92.65106151 85.30212303 77.95318454 70.60424606	40 40 40 40 40	39.26990817 39.26990817 39.26990817 39.26990817 39.26990817	Operating Pressure (in^3) 98.17477043 90.95996694 83.74516345 76.53035997	(in^3) 2.650718801 2.650718801 2.650718801 2.650718801	@ Operating Pressure (in^3) 7.214803487 7.214803487 7.214803487 7.214803487	17.67145 17.67145 17.67145 17.67145
0 1 2 3 4	100 92.65106151 85.30212303 77.95318454 70.60424606 63.25530757	40 40 40 40 40 40	39.26990817 39.26990817 39.26990817 39.26990817 39.26990817 39.26990817	Operating Pressure (in^3) 98.17477043 90.95996694 83.74516345 76.53035997 69.31555648	(in^3) 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801	@ Operating Pressure (in^3) 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487	17.67145 17.67145 17.67145 17.67145 17.67145
0 1 2 3 4 5	100 92.65106151 85.30212303 77.95318454 70.60424606 63.25530757 55.90636909	40 40 40 40 40 40 40	39.26990817 39.26990817 39.26990817 39.26990817 39.26990817 39.26990817	Operating Pressure (in^3) 98.17477043 90.95996694 83.74516345 76.53035997 69.31555648 62.10075299	(in^3) 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801	@ Operating Pressure (in^3) 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487	17.67145 17.67145 17.67145 17.67145 17.67145 17.67145
0 1 2 3 4 5 6	100 92.65106151 85.30212303 77.95318454 70.60424606 63.25530757 55.90636909	40 40 40 40 40 40 40 40	39.26990817 39.26990817 39.26990817 39.26990817 39.26990817 39.26990817 39.26990817	Operating Pressure (in^3) 98.17477043 90.95996694 83.74516345 76.53035997 69.31555648 62.10075299 54.88594951	(in^3) 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801	@ Operating Pressure (in^3) 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487	17.67145 17.67145 17.67145 17.67145 17.67145 17.67145 17.67145 17.67145
0 1 2 3 4 5 6 7	100 92.65106151 85.30212303 77.95318454 70.60424606 63.25530757 55.90636909 48.5574306	40 40 40 40 40 40 40 40 40 40	39.26990817 39.26990817 39.26990817 39.26990817 39.26990817 39.26990817 39.26990817 39.26990817	Operating Pressure (in^3) 98.17477043 90.95996694 83.74516345 76.53035997 69.31555648 62.10075299 54.88594951 47.67114602	(in^3) 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801	@ Operating Pressure (in^3) 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487	17.67145 17.67145 17.67145 17.67145 17.67145 17.67145 17.67145 17.67145 17.67145
0 1 2 3 4 5 6 7 8	100 92.65106151 85.30212303 77.95318454 70.60424606 63.25530757 55.90636909 48.5574306 41.20849212	40 40 40 40 40 40 40 40 40 40 40	39.26990817 39.26990817 39.26990817 39.26990817 39.26990817 39.26990817 39.26990817 39.26990817 39.26990817	Operating Pressure (in^3) 98.17477043 90.95996694 83.74516345 76.53035997 69.31555648 62.10075299 54.88594951 47.67114602 40.45634253	(in^3) 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801	@ Operating Pressure (in^3) 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487	17.67145 17.67145 17.67145 17.67145 17.67145 17.67145 17.67145 17.67145 17.67145
0 1 2 3 4 5 6 7 8 9	100 92.65106151 85.30212303 77.95318454 70.60424606 63.25530757 55.90636909 48.5574306 41.20849212 33.85955363 26.51061515	40 40 40 40 40 40 40 40 40 40 40 40	39.26990817 39.26990817 39.26990817 39.26990817 39.26990817 39.26990817 39.26990817 39.26990817 39.26990817 39.26990817	Operating Pressure (in^3) 98.17477043 90.95996694 83.74516345 76.53035997 69.31555648 62.10075299 54.88594951 47.67114602 40.45634253 33.24153905	(in^3) 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801 2.650718801	@ Operating Pressure (in^3) 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487 7.214803487	17.67145 17.67145 17.67145 17.67145 17.67145 17.67145 17.67145

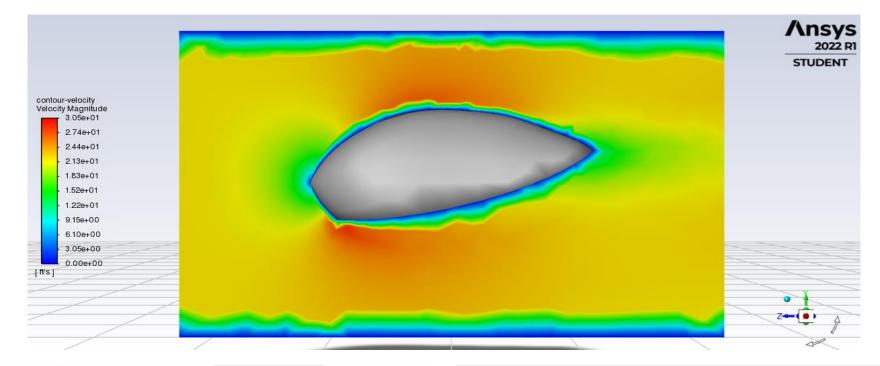
Frame Analysis

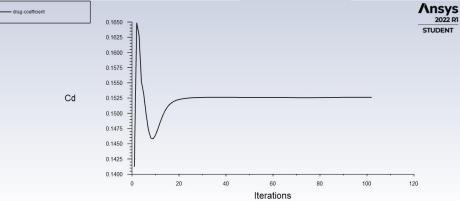
Stress

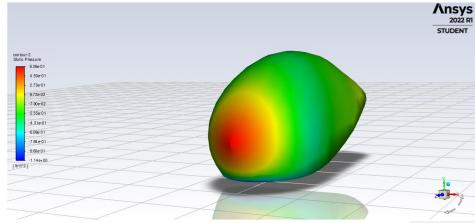
France Access	AL CIDACU		1	
Frame Assen	IDIY.3LDASM			Options
Overrid	e Mass Properties	Recalculate		
Include hi	dden bodies/component:			
Create Cer	nter of Mass feature			
Show wel	d bead mass			
Report coord	inate values relative to:	default		

Weight

Displacement


Frame Analysis




	Wall Thickness	Outside Dimentions	Length Base_outer (in)	Length Base_inner (in)	Length Height_ou ter (in)	Length Height_inn er (in)	Area (in^2)	MOI (in^4)	Max Stress (psi)	Safety Factor	Aspect Ratio
	1/8 inch (cross										
Cross Beam	beam)	2x1	1		-			0.331706		4.390223	2
	1/8 inch	2x1.5	1.5	1.25	2	1.75	0.8125	0.441732	3078.791	5.84645	1.333333
	1/8 inch (rear arms)	2.5x1.25	1.25	1	2.5	2.25	0.875	0.678385	2505.95	7.182904	2
	1/8 inch	2.5x1.5	1.5	1.25	2.5	2.25	0.9375	0.766602	2217.58	8.116958	1.666667
	1/8 inch	3x1.5	1.5	1.25	3	2.75	1.0625	1.208659	1687.821	10.66464	2
	1/8 inch	3x2	2	1.75	3	2.75	1.1875	1.467122	1390.477	12.9452	1.5
	3/16 inch	3x1.5	1.5	1.125	3	2.625	1.54688	1.67926	1214.821	14.817	2
	1/8 inch	2x1.5	1.5	1.25	2	1.75	0.8125	0.441732	7074.429	2.544375	1.333333
	1/8 inch (main										
Main Beam	beam)	3x1.5	1.5	1.25	3	2.75	1.0625	1.208659	3878.266	4.64125	2
	1/8 inch	3x2	2	1.75	3	2.75	1.1875	1.467122	3195.03	5.63375	1.5
	3/16 inch	3x1.5	1.5	1.125	3	2.625	1.54688	1.67926	2791.408	6.448359	2
	1/8 inch										
connector	(connector)	3.5x1.75	1.75	1.5	3.5	3.25	1.25	1.961589	2787.919	6.456429	2
	1/8 inch	4x2	2	1.75	4	3.75	1.4375	2.976237	2099.967	8.571563	2
	3/16 inch	4x2	2	1.625	4	3.625	2.10938	4.216125	1482.404	12.14244	
		Beam A (cross bar)		Bear	n B (main b	eam)					
	Length	34	inch	Length	50	inch					
	Load	160	pound	Load	250	pound					
				Bending							
				Moment							
	Bending Moment			(point							
	(point load, max			load, max		pound-					
	stress)	1360	pound-inch	stress)	3125	inch					

Windshield

