Ν F P Δ

NFPA Education and Technology Foundation Midway Review & Update Tennessee State University Dr. Fasoro Abiodun Dr. Habibi Mohammad April 12th, 2023

Agenda

- Team Introductions
- Project Goals and Objectives
- Design Progress
- Hardware Selected
- Calculations and Analysis
- Vehicle Build and Parts Integration
- Thank you Note
- Questions

Juan Cabrera Rosario

- <u>About</u>
 - ✓ Junior student, Mechanical Engineering
 - ✓ Senator, TSU NSBE Chapter
 - ✓ Forest Park, Georgia
- Position
 - ✓ Team Lead
 - ✓ Design Lead
 - ✓ Hydraulics Lead
 - ✓ Communications Lead
- Hobbies
 - $\checkmark\,$ Watching movies and shows
 - ✓ Playing the french horn
 - ✓ Playing Video games and Listening to music

Markel Belcher

- <u>About</u>
 - ✓ Junior student, Mechanical Engineering
 - ✓ Parliamentarian, TSU NSBE Chapter
 - ✓ Memphis, TN
- Position
 - ✓ Hydraulics Co-Lead
 - ✓ Communications Co-Lead
- Hobbies
 - ✓ Playing Video games
 - ✓ Playing and watching baseball
 - ✓ Journalling

Ishmahl Armstrong

- <u>About</u>
 - Sophomore student, Applied and Industrial Technology
 - ✓ Member of the Aristocrat of Bands
 - ✓ Atlanta, GA
- Position
 - ✓ Rider
 - ✓ Design Co-Lead
- Hobbies
 - ✓ Musician
 - ✓ Photography
 - ✓ Watching Anime

Christopher Buford II

- <u>About</u>
 - ✓ Graduate Student, Mechanical Engineering
 - ✓ Parliamentarian of TSUEAA board
 - ✓ Nashville, TN
- Position
 - ✓ Research assistant
 - ✓ CAD Designer
- <u>Hobbies</u>
 - $\checkmark\,$ Producing and recording music
 - $\checkmark\,$ Journaling and reading books
 - ✓ Exercising

- ✓ Junior Student, Mechanical Engineering
- Member of The American society of Mechanical Engineers
- ✓ Abuja, Nigeria
- Position
 - ✓ Documentation
 - ✓ Solid Works Specialist
- Hobbies
 - ✓ Reading mostly novels and poetry
 - ✓ Journalling and Puzzles
 - ✓ Cooking If it takes more than 3 hours, I'm out

Dr. Abiodun Fasoro

- <u>About</u>
 - Assistant Professor, Mechanical Engineering
 - ✓ Ph.D. Mechanical Engineering, University of Texas at Arlington,
 - ✓ MBA, Capital University, Columbus.
 - ✓ M.Phil.

Metallurgy and Materials Engineering, Univ. of Birmingham, England

- ✓ B.S. Mechanical Engineering, Obafemi Awolowo University
- ✓ Hometown is Texas
- Position

✓ Faculty Advisor

Dr. Mohammad Habibi

- <u>About</u>
 - ✓ Assistant Professor, Mechanical Engineering
 - ✓ Ph.D., CISE (Robotics & Computer Integrated Manufacturing), Tennessee State University
 - M.S., CISE (Systems Engineering), Tennessee State University
 - B.S., Electrical Engineering,
 Z. H. College of Engineering and Technology,
 Aligarh Muslim University,
 - ✓ Hometown is Nashville, TN
- Position

✓ Faculty Advisor

PROJECT GOALS AND OBJECTIVES

Project Goals and Objectives

The Competition's Goals and Objectives

First, a list of the Program objectives for the Competition as set by NFPA are:

- Stimulate education in fluid power components, circuits, and systems, incorporating them into a systems engineering experience.
- Provide students with experience in real-world engineering under a strict timeline of designing, simulating, ordering, building, testing, and demonstrating their designs.
- Stimulate innovative thinking for designing and testing potential new fluid power technologies or concepts integrated into a vehicle platform.
- Provide an industry recruitment opportunity for high-potential engineering seniors by engaging directly with practitioners in the fluid power industry.

Project Goals and Objectives

The Team's Goals and Objectives

In addition to the competition goals, the team identified specific goals and objectives the team we would like to accomplish for the project:

- ✓ Vehicle should be able to qualify for all races
- ✓ Vehicle's must meet the weight requirement by not exceeding 200 lbs
- ✓ Vehicle must meet all safety requirements; damage to driver cannot occur.
- Participating students must finish the project having learned more about fluid power and the product manufacturing products

Initial Sketch of Vehicle

This was part of the initial design process. The team had meetings to discuss the design of vehicle. The design lead came up with various sketches for the design.

Initial Sketch of hydraulic circuit

Final Hydraulics Circuit

Final Manifold Design

1	1 2 3 4 5 6 7	8	1	9 10	11 12	13 14 15	5 16	1
		Item	Qty	Model Code		Description	Manufact	urer
	ITEM ID PORT TYPE PORT	1	1	FV-14057-M1	Manifold body		Source Fluid Power	
	ACC. BV.	2	2	RV1-10-S-0-36	Relief Direct Act	ing	Eaton	
A	BV2, BV3, CAF	3	4	CV08-NP-0.3-B-00	Check 1 to 2		Danfoss ICS	
	GACC, GM, CARL #6 SAE	4	1	SV1-10-3-0-00	Solenoid 2 pos. 3	3 way	Eaton	
	MP, MP1, O'RING	5	1	NV1-8-S-0	Needle Valve, Sc	rew Adj	Eaton	
	PP, PS, RES	6	1	FAR1-10-S-0	Flow Control Cor	mpensated, Screw Adjust	Eaton	
_		7	1	SV3-10-0-00	Solenoid 2 pos. 2	2 way	Eaton	
		8	2	300AA00081A	Coil 12VDC, DIN		Eaton	
в								
			Not	0.01				
-			-300	es. D0 PSI max				
	GACC ACC BV2 BV BV3		500	JOT STITUX				
c	GM							
~								
	B ₹ Ý ₩							
	≥ 1 2							
	1 H2 MP1							
	PP 1 a MP							
D								
_	PS ZB							
						SUNS	UURU	
			Crea	tion Date	Drawn By	Customer Name		
E	RES		cicu	12/19/2022	J. McCarthy	Tennessee State U	Iniversity	
			Mate	erial	Print Checked By	Title	manifold	
			Prot	ective Finish	Sheet Name	Part Number	mannoid	
1				None	Sheet 1 of 1	FV-14057-V1 s	chem	
]	a D	Dim	ensions are in inches.	Third Angle Projection	Proprietary and Confidential. SunSource claims prop information disclosed on this drawing. It is issued in c	rietary rights on the onfidence and may not be	Rev
		Siz D	Do not specifie	scale drawing. Unless otherwise ed, apply standards per FV-1000-Spec1	\oplus = -+	reproduced or used to manufacture anything shown h written permission from SunSource to the user.	nereon without direct	A
					* ~			

Final manifold design

Final manifold design

Final Manifold Design

Final Manifold Design – 3D

Final manifold design – 3D

HARDWARE SELECTED

Hardware Selected

Hardware selected and purchased for vehicle

Vehicle	Hardware Selected	Part Number	
Part/component			
Motor	A Bi-rotation gear motor with external drain, 0.513 CID, and Keyed Shaft .625"	121.20.096.00	
Accumulator	1 Gallon Bladder Accumulator, A13100-3		
Check Valve	4 1-2, size 10, poppet style, catridge only check valve	CV10-NP-0.3-B-00	
Coil	2 12VDC DIN, J type coil	300AA00081A	
Electrical Connector	2 DIN, 12-24VDC w/ LED (for coils)	2291.3301	
Flow Regulator	A size 10 Flow adjustable, pressure compensated flow regulator with reverse flow check	FAR1-10-S-0	
Flow Restrictor valve	A size 8 screw style needle valve	NV1-8-S-0	
Gauge	A 2-1/2" diameter Gauge, with 0-3000 PSI range, and a SAE -4 male adjustable stem.	CF-1P-210-A-SAE	
Pump	A CW rotation Gear Pump with a 0.659 CID, and a Keyed Shaft .625"	111.20.243.00	
Relief Valve	1 direct acting relief valve	RV1-10-S-0-36	
Solenoid Valve	1 2 pos. 2 way Uni-poppet Normally Open solenoid valve	SV3-10-0-00	
Solenoid Valve	1 2 pos. 3 way Spool 1-2/1-3 solenoid valve	SV1-10-3-0-00	

Calculations and Analysis

Calculations

Gross Weight of Vehicle					
Accumulator	32 lbs.				
Check Valve (x4)	0.09 lbs.				
Electrical Connector (x2)	0.04375 lbs.				
Flow Regulator	0.44 lbs.				
Needle Valve (x2)	0.15 lbs.				
Gear Motor	7 lbs.				
Gear Pump	6 lbs.				
2W/2P Poppet	0.87 lbs.				
3W/2P Spool	0.93 lbs.				
Ball Valve (x2)	1.55 lbs.				
Bike	66 lbs.				
Total	118.0875 lbs.				

Estimated Weight of components: 52.0875 lbs.

Estimated Weight of vehicle with Rider: 286.0875lbs.

Analysis

Static Analysis

- Static Analysis of the rider on the bike. The analysis was initially performed using the estimated weigh of the rider on the bike. The aim is for areas of less and greater stress to be identifiable now and considerations to be taken when building the bicycle. Due to an error in either the assembly or parts design, our diagram was unable to Run.
- We plan to redesign the parts that caused the error and do another analysis.

Vehicle Build and Parts Integration

Assembled Bike

Component Locations

Load Center for Reservoir, Manifold, and Accumulator

Pump Mount

Motor Mount

Clearance for Hoses

Proposed Integration

Work in Progress

Parts unavailable Couldn't procure in time

Sprockets, Hoses, connectors and Controller

THANK YOU!!

A special thanks to our Mentor, Austen Nielsen, Mr. Jeff McCarthy, Mr. Ernest Parker, Mr. Josh Scarbrough, Mrs. Mary Pluta, Ms. Stephanie Scaccianoce and all the people who helped make our first time in the competition smoother than we expected.

We are extremely grateful.

Thank you!!!.

QUESTIONS?