

NFPA Education and Technology Foundation Final Presentation University of Louisiana at Lafayette Yasmeen Qudsi April 24, 2023

Chase Jeansonne

Michael Tonore

Austin Sun Chee Fore

Brett Hildreth

Lessons From Previous Years

2021-2022 Competition Vehicle

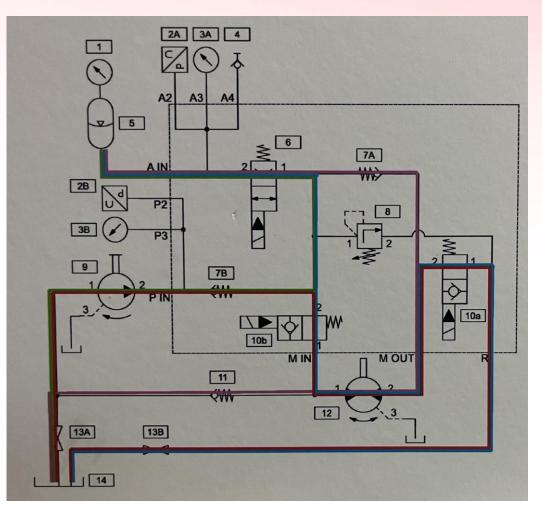
Lessons From Previous Years

The University of Louisiana at Lafayette has competed with the NFPA in the 2021-2022 event. Referencing the previous vehicle proved beneficial for the planning and development of this year's team.

- Old model is a traditional tricycle with high center of gravity
- Due to its dual axle construction and significant reinforcement the vehicle is heavy and over-engineered structurally
- The hosing used throughout the vehicle is unnecessarily long and has multiple tight bends causing turbulent flow
- The vehicle was optimized for the efficiency challenge which led to differing design objectives from this year's sprint-oriented design

Vehicle Design

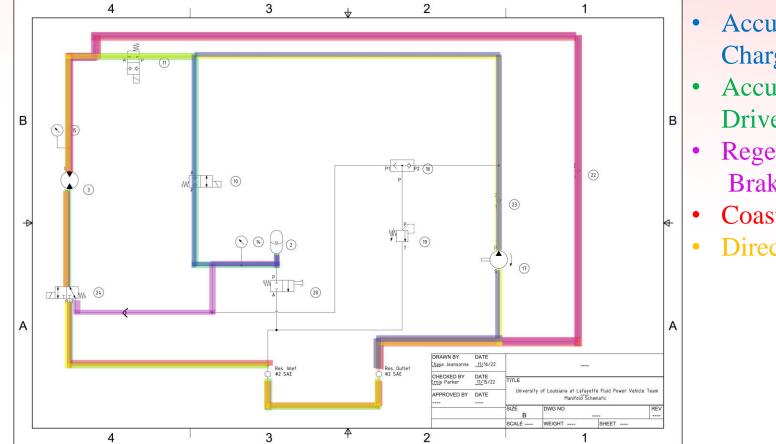
Vehicle Design



The team elected to build and modify a recumbent style tricycle with specific design concerns in mind;

- Modifying a commercial steel frame offers a high strength to weight ratio with minimal over-engineering
- A recumbent design's lower center of gravity provides stability at higher top speeds
- The single rear drive wheel simplifies power transmission from the gear motor to drive wheel.
- Lower overall weight (178 lbs.) when compared to previous year's (206 lbs.)
- Ideal centralized component mounting positions behind and under rider

Previous Year's Hydraulic Schematic

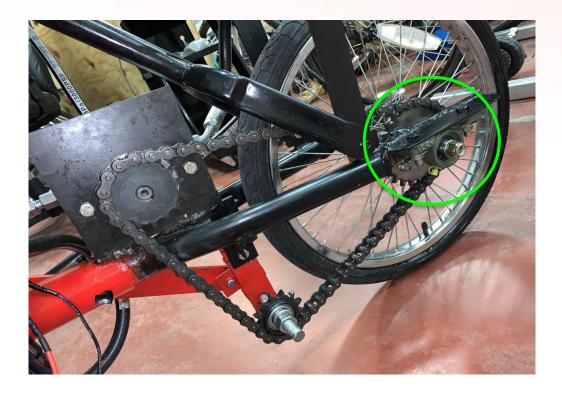


Current Year's Hydraulic Schematic

- Accumulator Charge
- Accumulator Drive
- Regenerative Braking
- Coasting
 - **Direct Drive**

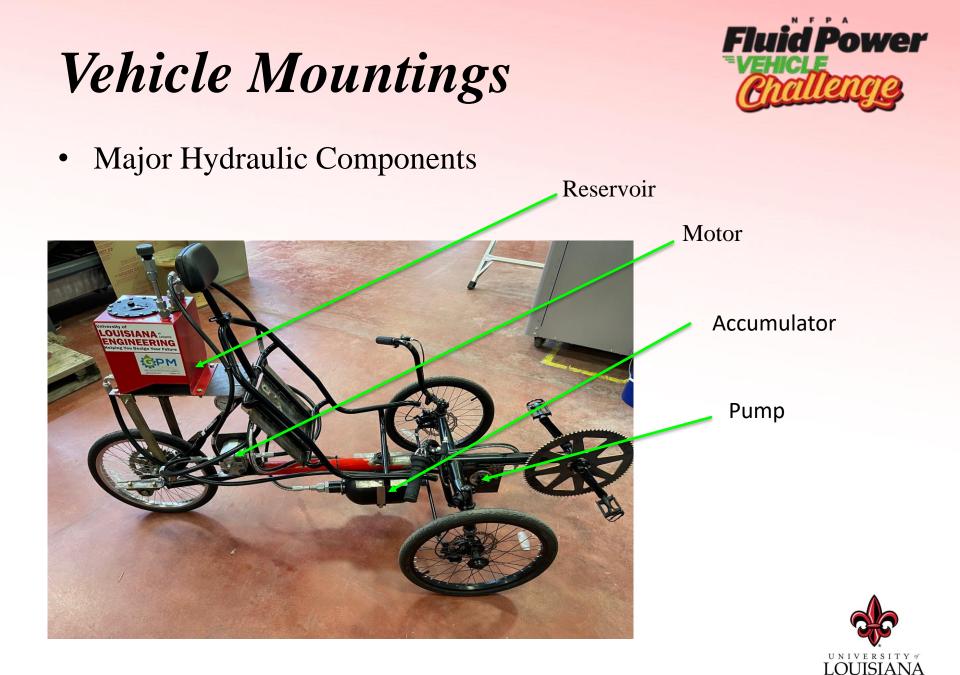
Vehicle Construction

• Main frame was extended 7 inches

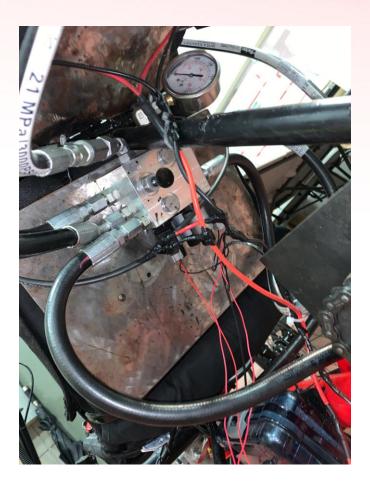

• Vehicle's seat was welded into a permanent position

 Rear wheel was replaced and connected to the vehicle using pillow block bearings and a ¹/₂ inch all thread

• Custom-made chain tensioner with idler sprocket was utilized at rear wheel to reduce the number of necessary chains

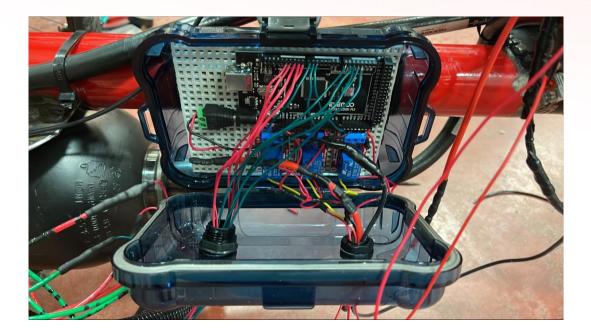


• Pedal gear was modified to accept custom-made gears



• Major Hydraulic Components

• Chain guard was added to protect the rider's leg from the pump to pedal chain


• A cushion was added as extra padding for the rider's back behind the seat along with a storage bag for extra components

• Electrical box was mounted on the main frame behind the vehicle's seat

Hydraulic Systems

Hosing

- Parker 5/8 inch OD hose with 3/8 inch ID and 1/8 inch wall thickness
- Rated working pressure is 3,000 PSI
- Light weight, low cost, easy fastening
- Precise measurements by Connector Specialists
 Incorporated
- Pressure tested to ensure 3,000 PSI working pressure

Hydraulic Systems

Motor

A 1.025 CID Bidirectional Danfoss Hydraulic Gear Motor was chosen in comparison to the previous year's 0.73 CID Bent Axis Piston Motor to enable higher sprint speeds.

Hydraulic Systems

Pump

A Danfoss 0.659 CID hydraulic gear pump was chosen in comparison to the previous year's 0.31 CID bent axis piston motor, to fulfill the mid-range flow requirements of the motor under accumulator drive.

Electrical Systems

Electronic Components Overview

- Controls solenoid valves
- Displays accumulator pressure
- Displays vehicle speed
- Utilizes two Arduino Mega boards

Electrical Systems

Arduino Mega Boards Functions

- First Arduino Mega
 - Controls LCD screen
 - Displays accumulator pressure
 - Interprets pressure transducer voltage
- Second Arduino Mega
 - Controls solenoid valves
 - Connected to light-up switches in 3D printed housing
 - Sends signals to relays for valve control

Electrical Systems

Speedometer and Power Supply

- Wireless speedometer
 - Uses GPS signal for speed and distance tracking
 - Odometer feature
- Power supply
 - Two 12V drill batteries wired in parallel
 - Doubles power storage capacity, maintains constant voltage

- \$5835.33 of the total budget of \$7000 was spent during the selection and construction process of the vehicle
- \$2871.64 was spent from the NFPA's \$3000 component allotment
- \$2963.69 was spent from ULL's \$4000 budget allotment
- Team was **\$1164.67 Under Budget**

Vehicle Testing

- Vehicle testing began shortly after the installation of the electrical systems, and enabled the validation of several design choices.
- During testing the pedal to pump sprocket gear ratio, rear wheel to motor sprocket gear ratio, and nitrogen pre-charge were varied.

Sprint Testing

11 tests conducted

Optimal settings

- Nitrogen pre-charge: 1400 PSI
- Accumulator charge: 3000 PSI
- Back wheel to motor gear ratio: 1.8:1

Results

- Top speed: 28 MPH
- Time elapsed: 18.04 seconds

Endurance Testing

5 tests conducted

Optimal settings

- Rider swap per lap
- Pump to pedals gear ratio: 5:1
- Back wheel to motor gear ratio: 1.35:1
- Nitrogen pre-charge: 1100 PSI

Results

• Distance traveled: 11,000 feet

Efficiency Testing

8 tests conducted

Optimal settings

- Nitrogen pre-charge: 1300 PSI
- Accumulator charge: 1400 PSI
- Back wheel to motor gear ratio: 1.8:1

Results

- Distance traveled: 328 feet
- Efficiency score: 35%

Regenerative Testing

6 tests conducted

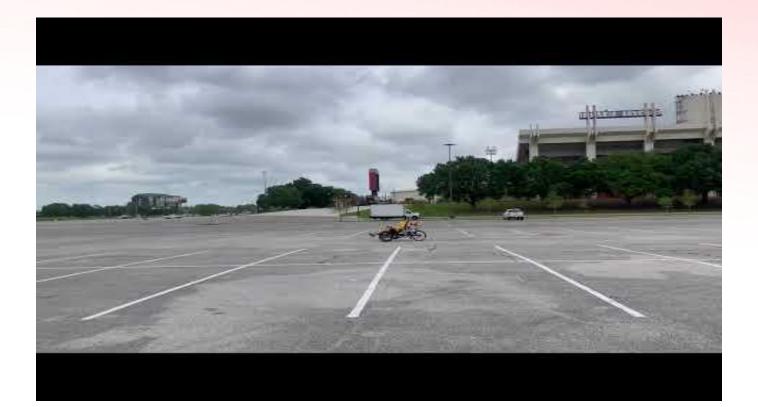
Optimal settings

- Nitrogen pre-charge: 850 PSI
- Back wheel to motor gear ratio: 1.8:1

Results

• Maximum distance traveled: 896 feet

Our NFPA Hydraulic Vehicle Journey



Our NFPA Hydraulic Vehicle Journey

Lessons Learned 2023

Knowledge Gained & Skills Developed

- In-depth understanding of hydraulic systems and their practical applications
- Hands-on experience in designing, building, and testing hydraulic bike components
- Improved teamwork, communication, and problemsolving skills
- Exposure to industry-leading experts and resources through the NFPA

Lessons Learned 2023

Expressing Our Gratitude

- Immense appreciation for the invaluable guidance, mentorship, and support provided by the NFPA, Danfoss, Hydac, IFP Motion Solutions, Sunsource, and Connector Specialists Incorporated
- Thankful for the opportunity to contribute to the future of sustainable transportation
- Looking forward to further collaboration and continued learning experiences

Questions?

