

NFPA Education and Technology Foundation

FINAL PRESENTATION WILDCAT FLUID POWER, SUNY POLY Dr AHMED ABDELAAL APRIL 2024

FUIGPOWEF

The Team

0

Josh Archanian Junior, MET	Henry Miller Junior, MET	Pascal Harrison Junior, MET	Thiha Soe Senior, MET	Chris Lam Junior, MET	Kyle Vedder Junior, MET
 Mechanical Design Lead SolidWorks specialist 	 Hydraulic Orcuit Design Hydraulic systembuilder and toobnician 	Hydraulic systems, circuit, and manifold design	 Mechanical design Part selection and integration 	 Electrical Design Lead Master programmer 	 Fabrication guru Electronics trouble shooting wizard
	Rider 2	Systems integration and fabrication mastermind	Graphic design authority		
	St	• Hider I			s show

Design Review

CAD Model

- CAD is an extremely versatile tool.
- The CAD model was used to visualize how components would be integrated.
- It was essential to our success designing and manufacturing.

Fig. 1 Isometric View

Fig. 2 Completed Bike

Major Mechanical components

Fig. 7 Flattened Model of

Reservoir

Fig. 4 Chain Drive System

Fig. 6 3D Model of Back Plate

Gearbox

2-Speed Gearbox

- Cable-controlled
- Low range for starting (3.78.1)
- Hgh range for cruising and regen (6.22:1)

Fig. 8 Gear Selector

Fig. 9 2-Speed Gearbox

Calculations

Sprocket ratio

Our ideal ratio was 1:10

$$CR = \frac{N_1}{N_2} * \frac{N_3}{N_4}$$

- CR =Compound Ratio
- $N_i =$ Number of teeth on respective sprocket $CR = \frac{46}{12} * \frac{23}{9}$

CR = 1:9.8

Fig. 11 Drive

23T (Gear 12T Ratio1:9.8)

Fig. 10 Drive Chain Sketch

46T

Initial Circuit

Coast

Drive Mode

Charging Mode

Regenerative Mode

Discharging Mode

Major hydraulic components

Fig. 12 External gear pump and motor

Fig. 13 Custom Manifold

Pump

Pump and Motor Selection

Mator

Hose Supplier

Marcy Hydraulics was kind enough to sponsor our custom hoses

Vehicle Build

Hydraulic Reservoir

- 2 pieces bent stainless steel
- Designed for construction with a single continuous weld
- ½ inch polycarbonate viewing window to monitor level and condition of fluid
- Vented cap

Fig. 21 TIG Welding

Fluid Power

Fig. 22 Welded Reservoir

Fig. 23 Laser cutting parts

Fig. 24 Finished Reservoir

Chassis Development

Fig. 25 Stock Frame

Fig. 26 Modified Frame

Fig. 27 Powdercoat Process

Rider Interface Components Assembly

Mounted Components

- Gear Shifter
- Mode Selector
- Display Screen

CHARGE DISCHARGE

Fig.29 Final Assembly

Core Drive Components Assembly

Mounted Components

- Pump
- Chains and Sprockets
- Reservoir

Fig. 30 Initial Design Sketch

Fluid Power

Fig. 31 Final Assembly

Center Components Assembly (Cont.)

Fig. 32 Mounted Pump

Fig. 33 Mounted Reservoir

Fig. 34 Mounted Chains and Sprockets with Chainguards

Back Rack Components Assembly

Components

- Accumulator
- PLC
- Batter
- Gearbox
- Speedometer
- Motor
- Manifold
- Hoses

Fig. 36 Final Assembly

Fluid Power

Fig. 35 Initial Design Sketch

Back Rack Components Assembly (Cont.)

Fig. 37 Mounted accumulator PLC and battery Fig. 38 Mounted gearbox & motor assembly

Fig. 39 Mounted manifold

Controller Logic

Fluid Power

PLC Input/Output Logic

Programing

User Interface

Fluid Power WILDCATE Challenge

Testing

Ride Testing

Modifications After Testing

Gearbox Gremlins

We needed to flip the entire mounting plate over after realizing the gearbox had a one-way bearing

Fig.40 Clutch Delete Coupling

Fig.41 Manufacturing Improved Coupling

- Original motor to gearbox connection was threaded, to our surprise it came loose during testing
- Manufactured new coupling
- Manufactured ½ inch pitch sprocket to fit 9 tooth spline output shaft

Fig. 42 Improved Coupling

Modifications After Testing

• Speedometer Problems

- Sensor from consumer grade bicycle speedometer worked intermittently and could not respond at a high enough frequency (1680 Hz 1900 Hz)
- Replaced with a magnetic hall sensor(15 kHz rated)

Fig. 43 Magnetic Hall Sensor

Fig. 44 Low Quality Reed Switch

Modifications After Testing

Fabricated custom rear chain tensioner to mitigate derailing issues

Fig. 45 Drive Chain System

Larger rear sprocket

Increased diameter of rear sprocket to increase acceleration, regen pressure, and ease of riding

 $MPH = \frac{wheel \ circumference \times \frac{motor \ speed}{drive \ ratio} \times 60 \ min/hr}{63360 \ inches/mile}$

18T (Drive Ratio of 2.428.1) = Theoretical Top speed of 27.45 MPH

28T (Drive Ratio of 3.775:1) = Theoretical Top speed of 17.67 MPH

Lessons Learned

Lessons Learned

- Components and parts do not always function as expected (check valves, gearbox, reed switch, accumulator charging kit)
- Purchasing lead times must be considered when scheduling.
- Scope creep is a big factor during fabrication especially for new or unfamiliar processes and when building from the ground up.

Fluid powered bikes are inherently difficult to ride and do not balance themselves.

Fig.46 Attempting to diagnose regen issue

Acknowledgements

- We would like to extend our heartfelt appreciation to the NFPA for making this competition possible and believing in SUNY Polytechnic.
- We thank all of our mentors and sponsors for your invaluable contributions, it goes without saying, but we could never have done it without you.
- There are those to whom we owe a particular debt of gratitude

SUNSOURCE

- Josh Scarbrough and Jeff McCarthy for your exemplary and everready assistance and expertise.
- Dr. Ahmed Abdelaal, our team advisor, biggest fan, and unwavering supporter through the highs and the lows of our first year.

MARCY HVO PAULICS & EQUIPMENT

ORGREN

Dr. Ahmed Abdelaal

Faculty Advisor

Questions?

