F P Ν Δ FIGPOVEF

NFPA Education and Technology Foundation Final Presentation Milwaukee School of Engineering Advisor: Dr. Luis A. Rodriguez

The Team

Left to right: Kyle McComb; Brandon Stevens; Michael Tulsky; Alan Xiong; Jeffrey Kaas, CFPHS; Steven Hegeman; Bryce Krueger

Problem Statement

Develop a human powered vehicle to:

- Transmit power through hydraulics
- Compete in Sprint, Efficiency, Regeneration, Endurance
- Engage in fluid power and garner interest

2022-2023 Design

Tricycle Downsides

Low stability at high speed

Chain/Gear Issues

Proper tensioners are vital

Hydraulic Design

 Small motor = not enough flow and torque; low speed

Design Objectives

- Produce an original design
- Tailor our design for speed and simplicity
- Create a reliable and safe vehicle
- Unique pneumatic application

Preliminary Designs

		Design #1	Design #2	Design #3	Design #4
Criteria	Weight	Recumbent Trike	Rower	Stepper Scooter	Stabilized Bicycle
Cost	5%	2	3	3	4
Ease of Manufacturing	5%	3	1	3	3
Reliability	10%	3	2	3	4
Weight	15%	3	2	5	5
Component Space	5%	4	4	2	2
Stability	10%	4	4	3	2
Safety	10%	3	2	2	3
Sprint	10%	3	2	3	5
Endurance	10%	4	2	3	5
Efficiency	2.5%	3	2	3	4
Regeneration	2.5%	4	3	2	4
Innovation	15%	2	4	5	2
Total	100%	3.075	2.625	3.425	<mark>3.6</mark>

Selected Vehicle Design

Component Identification: Calculations

Pulling Force: $F_p = W \frac{\pi}{180} \sin(\theta) = 29.85 \, \text{lbf}$

Rolling Resistance: $F_R = W\mu_f \cos(\theta) = 5.04 \text{ lbf}$

Total Pull Required: $F_{total} = F_R + F_p = 34.89$ lbf **Torque:** $\tau = F_{total}R = 453.62 in \cdot lb$

CIR motor: $CIR_{motor} = 2\pi \frac{\tau}{1000} = 0.193 \text{ in}^3/\text{rev}$

CIR of Pump: $CIR_{motor,act} = \frac{231 \, GPM}{RPM} \eta_{pump} = 0.066 \, \text{in}^3/\text{rev}$

Gear Ratio:

72:9 = 8:1

 F_R

Components: Hydraulics

Pump

- Dynamic Aluminum Gear Pump
- GP-F10-13-P-C
- 0.0854 in³/rev

Motor

- Marzocchi Bidirectional Gear Motor
- ALM1A-R-5-E2
- 0.2135 in³/rev

Accumulator

- SteelHead Composite Accumulator
- AB30CND10G0N

1 gallon

Components: Pneumatics

Cylinder

- NFPA Actuator
- PA-MS4-2.00X6-HC-KK1-MPR
- 2" Bore, 6" Stroke

Air Reservoir

- Steel Compressed Gas Tank
- CRVZS-2
- 2 Liter

Components: Electronics

Interface: Enovation Power Vision 500

Controller: uControl Module

Inputs	MC2-18-6
Universal Analog / High Frequency	4
Universal Analog	14
TOTAL INPUTS	18
Outpute	MC2-18-6
Outputs	
4A PWM (feedback)	2
4A PWM (feedback) Dual Range PWM 4A / 0.4 A (feedback)	2 4
4A PWM (feedback) Dual Range PWM 4A / 0.4 A (feedback) 15A PWM (feedback)	2 4 0
4A PWM (feedback) Dual Range PWM 4A / 0.4 A (feedback) 15A PWM (feedback) TOTAL OUTPUTS	2 4 0 6
4A PWM (feedback) Dual Range PWM 4A / 0.4 A (feedback) 15A PWM (feedback) TOTAL OUTPUTS	2 4 0 6

CAN Sensor Supply

	_					L
1	18	0	0	0	0	¹³)
	12 🔘	0	0	0	0	© 7
	, e	0	0	0	0	•

	Connector J1 Key E
Pin	Function
E1	Power Battery (+)
E2	Output PWM 4A With Feedback
E3	Output PWM 4A With Feedback
E4	Input Universal Analog
E5	Load Power (+)
E6	Battery Ground (-)
E7	Sleep Mode
E8	Output PWM Dual Range 4A / 0.5A
E9	Output PWM Dual Range 4A / 0.5A
E10	Input Universal Analog
E11	Load Power (+)
E12	Battery Ground (-)
E13	Output PWM Dual Range 4A / 0.5A
E14	Output PWM Dual Range 4A / 0.5A
E15	Input Universal Analog
E16	Input Universal Analog
E17	Input Universal Analog
F18	Input Universal Analog

	4	L					
(18	_	6	6	6	13	٦
12	6	6	6	6	6	6	7
	0	0	0	0	0	0	
ſ	6		-		-	1	J

	Connector J2 Key A	
Pin	Function	
A1	Sensor Supply Output (+10V/+5V)	
A2	CAN2 H / RS232 TX	
A3	CAN1 H	
A4	Input Universal Analog	
A5	Input Universal Analog	
A6	Input Universal Analog	
A7	Input Universal Analog / High Freq.	
A8	CAN2 L / RS232 RX	
A9	CAN1 L	
A10	Input Universal Analog / High Freq.	
A11	Input Universal Analog / High Freq.	
A12	Input Universal Analog / High Freq.	
A13	Sensor Supply Ground (-) / RS232 GND	
A14	Input Universal Analog	
A15	Input Universal Analog	
A16	Input Universal Analog	
A17	Input Universal Analog	1
A18	Input Universal Analog	1

Electrical Schematic

Pressure Transducer

Input Channel: Transducer 1 – A15 Transducer 2 – A16 Transducer 3 (pneumatic) – A17

Solenoid Valves

Output Channel: DMDA Solenoid – E2 DTBF Solenoid – E3 Pneumatic Solenoid (Position 1) – E8 (Position 2) – E9

Inductive Sensor (speed)

Input Channel: Inductive Sensor – A10

Hydraulic Circuit

Hydraulic Circuit: Normal Drive

Hydraulic Circuit: Static Accumulator Charge

Hydraulic Circuit: Accumulator Discharge

Hydraulic Circuit: Freewheeling (Default)

Hydraulic Circuit: Regen Brake Engaged (Freewheeling)

Hydraulic Circuit: Regen Brake Engaged (Pedaling)

Hydraulic Circuit: Supplemented Pump Flow

Manifold Design

Pneumatic Circuit

Electric Circuit

Fabrication - Reservoir

UNIVERSITY

24

Fabrication – Mounts

Fabrication – Sprockets

Fabrication – Bracket

Fabrication - Stabilizers

- Finite Element Analysis
- SolidWorks planning

Fabrication - Stabilizers

- Stability for low speeds
- Linear movement

Fabrication – 3D Prints

Interface Box

Chain Guard

Pump Mount Spacer

Testing Problems

Chain issues

Leaking connections

Pneumatic regulator
pressure

Lessons Learned

 Experience drives problem solving

Persistence is key

 Learning is continuous

Acknowledgements

Dr. Luis A Rodriguez Senior Design Instructor

Brett Tarczewski Fabrication Specialist

Jim Kaas, CFPE & Chandlar Armstrong, CFPHS (MSOE '19) Industry Mentors

Other Acknowledgements:

Mary Pluta

Ernie Parker, CFPAI

Dr. Kevin Hart

Various MSOE Staff

Joshua Scarbrough Controls Assistance

Questions?