

NFPA Education and Technology Foundation

FINAL PRESENTATION Training Wheels Initiative Gary Bradley 04/08/2024

Brett Acker	Jonathan Sanchez	Mariana Ruiz	
Electronic Design Team & Pneumatic Design Team	Hydraulic Design Team	Mechanical Design Team	
Design electronic and pneumatic circuit/components and ensure circuits work efficiently. Test and simulate the circuits. Ensure Electronic design is compatible with the Mechanical and Hydraulic Design.	Design the Hydraulic circuits and ensure the circuits work efficiently. Test and simulate the circuits then implement the circuits onto the bike. Ensure Hydraulic design is compatible with both Electronic and Mechanical Design.	Design and assembled the mechanical components for the bike utilizing Fusion 360. Ensuring Mechanical design is compatible with both Hydraulic and Electronic Design.	

Alina Guzman	Kaleb Lorance	Timothy Gnalian	
Mechanical Design Team	Mechanical Design Team	Pneumatic Design Team	
Design and assembled the mechanical components for the bike utilizing Fusion 360. Ensuring Mechanical design is compatible with both Hydraulic and Electronic Design.	Design and assembled the mechanical components for the bike utilizing Fusion 360. Ensuring Mechanical design is compatible with both Hydraulic and Electronic Design.	Design the Pneumatic circuit and ensure the circuits work efficiently. Test and simulate the circuits. Ensure Pneumatic design is compatible with both Hydraulic and Mechanical Design.	

Mr. Michael Haen Industry Mentor

Dr. Bhaskar Vajipeyajula Faculty Advisor

Mr. Stephen Brunton Industry Mentor

Professor Gary Bradley Capstone Instructor

Vehicle Construction Chronology

- 1. Water-jetted sheet metal, cut tubing, then machined on lathe and mill.
- 2. Welded frame.
- 3. Painted frame and assembled vehicle components.
- 4. Programmed and wired.
- 5. Manufactured manifold and assembled hydraulics.

CAD model of the bike frame

Bike Frame at initial stage of welding Bike Frame completed with topcoat

Accumulator Mount: Water jetted, welded onto the frame

HMI Stand being welded and grinded

Drilling holes into bracket

Bike base completed

Final bike (Before Testing)

Vehicle Testing

• Findings after testing:

- $\circ~$ Reduce gear ratio from pedals to pump.
- o Increase gear ratio from motor to wheel.
- Make connections to batteries more secure.
- Change position of cranks for more ergonomic pedaling.
- Flip direction of back axle (wheel loosened itself).
- Buy optimized sized hoses and fittings to reduce dangling lines and increase efficiency.
- Secure pneumatics when extended and retracted.
- Change code for tachometer.

Vehicle Testing

• Findings of 3rd test – Pre-charge Testing

Precharge (psi)	Oil Pressure (psi)	Distance (ft)	Efficiency
700	1320	377	0.072
600	1405	407	0.067
500	1480	456	0.069

*based on NFVC's official efficiency calculator

Vehicle Design Review

Previous Texas A&M Team Fluid Power Hydraulic Circuit

Advantages & Disadvantages Fluid Power of Last Year's Design

Advantages

- Utilizing an already built frame
- Efficient Pump and Motor Size
- Light Weight
- **Thorough Electronic Controls**

Disadvantages

- Pneumatic Design was not implemented
- **Unpainted Metal Components**
- Over engineered drivetrain
- **Exposed Wiring**

This year Texas A&M built the bike **<u>FROM SCRATCH</u>** and is entirely independent from last year's design.

Mechanical Design

Mechanical Design

Hydraulic Design

- Reduced Directional Valve count from 4 to 3.
- Regeneration line implemented directly to motor.
- Reduction in joints and line lengths.
- Design approved by Professor Bhaskar and Ernie Parker
- Normally Open 2/2 Way valve used at DCV1 and a Normally Closed 2/2 Way valve used at DCV2 to make the default no power mode drive mode.

Hydraulic Design Cont.

- Hydraulic Manifold designed and manufactured from scratch.
- Used Fusion360 and HYDAC Cavity Manuals to design manifold line bodies.
- Required cut angles and surface finishes so valves have a good seal.
- Leak tested at high pressure to assure safety and quality.
- Machined in-house by department technician.

Pneumatics

Pneumatics

- Purpose
 - Jack up the bike
 - Move bike backwards
- Cylinder Function
 - 2 types of cylinders
 - One extends the jack
 - One jacks up the bike
- Safety features
 - Manual switch
 - Prevents cylinder malfunctions

Electronics - Hardware

eX705 Multitouch

2 pressure sensors, 1 inductive sensor 5 Directional Control Valves

Electronics -Electrical Panel

- Bolts to back of seat
- Removeable Lid for protection
- Room for busses to mount on the inside
- Holes for neatly routing wires
- Pneumatic valves bolt to back and pneumatics switch secured to side

Electronics - HMI UI

Page 1 - Mode, Speed, and Pressure Display

Page 2 – Pressure Charts and Data Download

Final Vehicle

Finalized vehicle after testing

Vehicle crate built and shipped

Lessons Learned

- Technical Lessons:
 - Use Aluminum for the frame instead of steel to help with the vehicle weight.
 - There was no need to use thick and bulky 14ga wire for electronics as opposed to thinner 18ga.
 - Make Manifold ports size 8 to have less reductions in lines.
 - Add Oil level dipstick to easily check oil amount.
 - Have better spacing between accumulator, manifold, and motor to allow lines to be installed easier.
- Abstract Lessons:
 - Finishing a project without cutting corners takes a lot of dedication and time, even if it seems simple from the outside.
 - Your first design will probably not be the best option.
 - Small mistakes can turn into bigger problems, have contingencies for your contingencies.
 - Collaborating with others outside of the team can lead to a different perspective of your project and problem you're facing.
 - When sourcing components ensure vendors understand what you need and efficiently communicate with vendors to reduce miscommunication.

Thank You

To all the companies/associations that helped us create our bike. We could not have done this without them.

Thank You, Any Questions?

