

NFPA Education and Technology Foundation

FINAL PRESENTATION NORTHERN ILLINOIS UNIVERSITY TEAM ADVISOR: GHAZI MALKAWI DATE: 04/22/2024

Team Introductions

Frame and Mechanical

Colin Rusch

Colton Smeltzer

Brandon Humpal

Riley Bell

Team Introductions

Electrical and Controls

Max Christensen

Andrew Jackson

Htooler Shee

Noah Roethle

Team Introductions

• Hydraulics

Mohamed Alani

Luka Gligorevic

Marko Jankovic

Austin Johnson

Previous Year Frame vs This Year Frame

Last Years Vehicle

This Year Vehicle

Old Frame vs New Frame

Last Year

- Poor handling
- Excessive weight
- No speed ratio options
- Sprocket alignment issue chain derailing from sprocket
- Pedal positioning

This Year

7-speed Tricycle from Sun Bikes utilized:

- Decreased the overall weight of the bike from 204 lb to 170 lb
- Optimized rider position
- Enhanced steering for improved handling
- Utilized the existing derailleur transmission for versatile gearing options

Drivetrain Layout

- Pedaling input powers sprocket, driving a hydraulic pump
- Pump drives fluid to a hydraulic motor, powering the rear axle

Frame Modification

Incorporated mounting plates for hydraulic components. Modified chain position and added sprocket for proper chain guidance.

Controls, Previous System vs New System

New

Controls, Previous System vs New System

Last Year

- Requires multiple inputs to control each drive mode
- Extremely rudimentary system, uses switches
- Difficult to access and operate while driving.
- Inability to examine hydraulic system

New

- Requires one touch on the touch screen to control each drive modes
- Complex system with room for future improvements (data analytics)
- Good placement
- Displays wheel speed, pressure, and temperature

Controls System

- Automation Direct C-more EA9-T7CL Touch Screen
 - Display temperature, pressure, wheel speed
 - Communicates what solenoids to control by touch

Controls System

- Automation Direct Click C0-12DD2E-2-D PLC
 - Controls solenoid valves
 - Communicates inputs for temperature transmitter, pressure transmitter, and hall effect sensor to touch screen

Sensors

O Hall EffectO NJK-5002C

 O Pressure
 O SPT25-10-5000A

- O Temperature
 - O XTP25N-100-0300F

Sensors

Temperature sensor

Pressure sensor

Wiring Harness

Speed sensor

Ladder Logic Code for Sensors and Timer

New System Improvements

- Displays temperature, pressure, and bike velocity
- Can store max velocity and distance values
- Only requires one input to control drive modes

0.00 min: _{Timer}	sec	Main	Menu	Start/ Tin	'Stop ner	Reset Timer
0.0°F 0.0 Temperature Velo)MPH ocity	43.2PSI Pressure			
Direct Drive	Acc Charge		Acc Discharge		Regen	

Old vs New Hydraulic System

New Circuit

Tubing Info

Six custom-fabricated tubes were utilized.

- o OD: 0.5", ID: 0.334"
- o Wall thickness of 0.083"
- Pressure rating of 3100 psi
 Factor of safety 6-1
- Material is Stainless steel
- Flare size is 37 degrees

Custom Tubing

Old vs New Hydraulic System

Old System	New System		
Four solenoid valves	Three solenoid valves		
Direct drive requires two valves to be energized	Direct drive is the neutral driving mode (no valves energized)		
No hand pump support for accumulator charge	Hand pump circuit was added to support for accumulator charge		
Plastic reservoir	New durable Steel tank		

Pump and Motor

Hydraulic Motor

Hydraulic Pump

Accumulator

Old System	New System
600 psi pre-charge for all races	Sprint: 1400 psi pre-charge Regen: 600 psi pre-charge Efficiency: 1400 psi pre-charge
Max hydraulic pressure of 2100 psi	Max hydraulic pressure of 3000 psi

Vehicle Testing

- Endurance test
 - Optimal results were 13150 ft in 15 minutes (average speed 10 mph, 1:1 pump-pedal ratio, motor variable gear ratio of 1.17-2.15)
- Sprint test
 - Top speed was 23.1 mph (1400 psi precharge at 3000 psi hydraulic pressure).
 - Pedal:pump gear ratio 1:1, motor gear ratio of 1.17

Vehicle Testing Cont.

- Efficiency test
 - o Optimal efficiency 24%.
 - Accumulator pre-charge of 1400 psi, hydraulic pressure of 2000 psi
 - Distance traveled of 1015 ft
- Regen test
 - Accumulator pre-charge of 1000 psi
 - Distance traveled of 835 ft

Lessons Learned

- Controls:
 - Understanding of basic wiring
 - In depth understanding of coding with ladder logic
 - Greater understanding of long-term teamwork
 - How to problem solve using mechatronics
- Hydraulics:
 - Designing hydraulic circuits
 - Piping installation
 - Functionality of hydraulic components
- Drivetrain:
 - Derailleur mechanism crucial; durable, effective, and easy to adjust.
 - Downsides: The chain may skip sprockets due to rerouting.
- Frame:
 - Custom-built is not always the most effective; prebuilt reduces cost.
 - Provides a solid foundation for equipment integration.
 - Downsides: Limits control over design.

