

NFPA Education and Technology Foundation FINAL PRESENTATION FLUID POWER CLUB AT SOUTH DAKOTA STATE DOUG PRAIRIE 4/24/2024

Team Introductions: ABE

Nathaniel Post

Ty Schneider

Jacob Thompson

Myranda Hentges

Team Introductions: ABE

Cody Kramer

Levi Nightingale

Jake Druley

Design Objectives

New Frame

 $_{\odot}\,$ "Pallet" concept for mounting hydraulic circuit

- New Components

 Pump, Motor, Manifold, Reservoir
- Simplify hydraulic circuit
- Adding 6-Speed Transmission
- New Electronic System

Progress Since Midway Review

- New Frame Construction
 - Routed Plumbing
 - Attached Components
 - Shifter and Brake Cable
- Test New Bike: 3/18/24-4/19/24
 - Collect Data
 - Analyze Data
 - Make Improvements
- Finishing Touches: 4/21/24-4/24/24

Design Choices

- Simplified manifold; size and circuit
 - Simplify lines to reservoir, Accumulator valve nominally closed
- Transmission
 - Pinion 6-speed transmission
- Pump / Motor
 - Changed from gear to piston pump for efficiency
 - Increased motor displacement from 4.1 to 5 cc/rev
- Brand new electronics

Pallet Concept

- Package components above rear axle on the new "pallet"
 - Improved Serviceability (repairs, monitoring, etc.)
 - Improved Manufacturability (hydraulic system testing)
 - Simplicity
 - Safety
- Minimize conduit lengths all elements placed next to each other
- Creates "Cleaner" look to bike
- Improve rider experience

New Components

- Simplified manifold
 - Designed to have "coast" mode
 - Valve nominally open for accumulator
 - Easy access manual pressure relief valve
- New Reservoir
- Pinion 6-Speed Transmission
- Pump
- Motor

Hydraulics: Old Circuit

Hydraulics: New Circuit

- Test Ports
 - Located at every component
 - Pressure transducers
 - Manual test ports
- "Coast Mode"
- Pedal to Power mode when no battery power
- Accumulator valve nominally closed
- Manual relief valve in case of power loss
- External check valve for regen suction

Hydraulics: New Manifold

Hydraulics: Valve Positions

Mode	Valve			
	А	В	С	D
Pedal to Power	0	0	0	0
Accumulator Charge	1	1	0	0
Regenerative Charge	1	1	1	0
Accumulator Discharge	1	0	0	0
System Dump	0	0	0	1

* Valve D is for manual discharge

Hydraulics: Pedal to Power

Hydraulics: Accumulator Charge

luid Power

5

Hydraulics: Regenerative Charge

Fluid Power

Hydraulics: Accumulator Discharge

Fluid Power

Hydraulics: System Dump

Hardware Selection

Pinion 6-speed Transmission

Current bike has low speed gear

- Good for take off
- Difficult to reach high speeds New Transmission
- Bike will have 6 gears
- Later information about gear ratios

Number of gears	6
Total range	295 %
Step size	24.3 %
Easiest gear	0.95
Fastest Gear	0.32
Gearbox weight	ca. 1800 g

Rider	Cadence	80RPM
luci	cuuchee	0011111

Internal Ratio	RPM Out	4:1 gear to pump
1.05	84	336
1.32	105.6	422.4
1.61	128.8	515.2
2.04	163.2	652.8
2.5	200	800
3.13	250.4	1001.6
	Internal Ratio 1.05 1.32 1.61 2.04 2.5 3.13	Internal RatioRPM Out1.05841.32105.61.61128.82.04163.22.52003.13250.4

New Hardware Improvements

- Reduced Operator Felt Impulse (Hydro Leduc minimum speed 200RPM, Danfoss 700RPM)
- Efficiency Increase (92% Bent Axis) Closer to operational Speed
- Torque Increase
- Increased Momentum

New Pump and Motor

Type: Gear Motor Manufacturer: Danfoss Weight: 5.5lb Bi-Directional Displacement: 8.4 cm³ Type: Bent Axis Piston Pump Manufacturer: Hydro Leduc Weight: 9.7lbs Clockwise Rotation Displacement: 5 cm³ Flow Rate:3.67 GPM

New Display

- MRS MConn Mini
 - Series Smallest HMI-Display
 - 2.4-inch Colored Display
 - Customizable, Waterproof,
 Flexible

Focus on simplicity, functionality, and easily accessible support

Last year's controller display

Electronic Controller

- MicroPlex 7X CAN Controller with High Integration
 - 7 inputs/outputs & 3 configurable analog or digital inputs
- Cody adds code?
- Microcontroller things?

Splitting Data


```
// We need this because we are sending data values that are larger than 256 We need up to 5000
//Return value of most significant hex bit of an int between the value 256 - 65535
int user_return_hex_MSB(int value)
{
    int MSB = (value >> 8) & 0xFF;
    return MSB;
}
//Return value of least significant hex bit of an int between the value 256 - 65535
int user_return_hex_LSB(int value)
{
    int LSB = (value & 0xFF);
    return LSB;
}
```

Micro Plex Programming

<pre>// 3 Input/Output for the 3 coils. user_Coil1 = can_db_get_value(0, Coil_1); os_pin_write(Coil1, user_Coil1);</pre>	//Read CAN Message //set a Digital Output					
user_Coil2 = can_db_get_value(0, Coil_2); os_pin_write(Coil2, user_Coil2);	//Read CAN Message //set a Digital Output					
user_Coil3 = can_db_get_value(0, Coil_3); os_pin_write(Coil3, user_Coil3);	//Read CAN Message //set a Digital Output					
<pre>os_can_send_message(0x720, 0, 8, user_heartbeat, 0 '/ os_can_send_message(0x101, 0, 8, user_Coil1, use //Andrew said to comment out line above</pre>	, 0, 0, 0, 0, 0, 0); r_Coil2, user_Coil3, 0, 0, 0, 0, 0);	<pre>//Sending CAN Heartbeat //Sending CAN Message</pre>	Message for 3 coils	They can be sent indivi	dually in PCAN View	//101 = Coil_Messag
<pre>// 3 Gauge Readings and the Battery Voltage.</pre>						
user_BattVolt = os_algin_mv(Batt_Volt); user_AccmPress = os_algin_mv(Accm_Press); user_PumpPress = os_algin_mv(Pump_Press); user_MotorPress = os_algin_mv(Motor_Press);	// Reading Battery Voltage // Reading Accumulator Presssure // Reading Pump Presssure // Reading Motor Presssure	(Read Analog Input) (Read Analog Input) (Read Analog Input) (Read Analog Input)	(Name of Pin) (Name of Pin) (Name of Pin) (Name of Pin)	Battery Voltage = Accumulator Pressure = Pump Pressure = Motor Pressure =	Pin 2 Pin 8 Pin 7 Pin 9	
<pre>tmpbyte_batt_volt_MSB = user_return_hex_MSB(user_B tmpbyte_batt_volt_LSB = user_return_hex_LSB(user_B</pre>	attVolt); attVolt);					
<pre>tmpbyte_accm_press_MSB = user_return_hex_MSB(user_, tmpbyte_accm_press_LSB = user_return_hex_LSB(user_,</pre>	AccmPress); AccmPress);					
<pre>tmpbyte_pump_press_MSB = user_return_hex_MSB(user_ tmpbyte_pump_press_LSB = user_return_hex_LSB(user_</pre>	PumpPress); PumpPress);					
<pre>tmpbyte_motor_press_MSB = user_return_hex_MSB(user_ tmpbyte_motor_press_LSB = user_return_hex_LSB(user_</pre>	_MotorPress); _MotorPress);					

Display Static Code

clear display once and prepare the static content of the display page and
flag_clear_do_once == 0)
<pre>flag_clear_do_once = 1;</pre>
// Prepare background, clear old content
<pre>board_set_lcd_background_color(LCD_COLOR_BLUE);</pre>
// print the gauge reading information Titles
<pre>board_lcd_print_text(10 , 40 , "Battery Voltage", LCD_FONT_ARIAL_22, LCD_COLOR_WHITE, LCD_COLOR_BLACK);</pre>
<pre>board_lcd_print_text(10 , 86 , "Accm Pressure", LCD_FONT_ARIAL_22, LCD_COLOR_WHITE, LCD_COLOR_BLACK);</pre>
<pre>board_lcd_print_text(10 , 132 , "Pump Pressure", LCD_FONT_ARIAL_22, LCD_COLOR_WHITE, LCD_COLOR_BLACK);</pre>
<pre>board_lcd_print_text(10 , 180 , "Motor Pressure", LCD_FONT_ARIAL_22, LCD_COLOR_WHITE, LCD_COLOR_BLACK);</pre>

Display Status Code


```
if ((user Coil1 State == 0) && (user Coil2 State == 0) && (user Coil3 State == 0))
    board_lcd_print_text( 280 , 220, "P2P", LCD_FONT_ARIAL_16, LCD_COLOR_WHITE, LCD_COLOR_RED);
    board_lcd_print_text( 5 , 220, "Charge", LCD_FONT_ARIAL_16, LCD_COLOR_WHITE, LCD_COLOR_BLACK);
    board_lcd_print_text( 200 , 220, "Regen", LCD_FONT_ARIAL_16, LCD_COLOR_WHITE, LCD_COLOR_BLACK);
    board_lcd_print_text( 80 , 220, "Discharge", LCD_FONT_ARIAL_16, LCD_COLOR_WHITE, LCD_COLOR_BLACK);
//Accumulator Charge
else if((user Coil1 State == 1) && (user Coil2 State == 1) && (user Coil3 State == 0))
    board lcd print text( 280 , 220, "P2P", LCD FONT ARIAL 16, LCD COLOR WHITE, LCD COLOR BLACK);
    board_lcd_print_text( 5 , 220, "Charge", LCD_FONT_ARIAL_16, LCD_COLOR_WHITE, LCD_COLOR_RED);
    board_lcd_print_text( 200 , 220, "Regen", LCD_FONT_ARIAL_16, LCD_COLOR_WHITE, LCD_COLOR_BLACK);
    board lcd print text( 80 , 220, "Discharge", LCD FONT ARIAL 16, LCD COLOR WHITE, LCD COLOR BLACK);
//Mode Determination for Regen
else if((user_Coil1_State == 1) && (user_Coil2_State == 1) && (user_Coil3_State == 1))
    board_lcd_print_text( 280 , 220, "P2P", LCD_FONT_ARIAL_16, LCD_COLOR_WHITE, LCD_COLOR_BLACK);
    board_lcd_print_text( 5 , 220, "Charge", LCD_FONT_ARIAL_16, LCD_COLOR_WHITE, LCD_COLOR_BLACK);
    board_lcd_print_text( 200 , 220, "Regen", LCD_FONT_ARIAL_16, LCD_COLOR_WHITE, LCD_COLOR_RED);
    board_lcd_print_text( 80 , 220, "Discharge", LCD_FONT_ARIAL_16, LCD_COLOR_WHITE, LCD_COLOR_BLACK);
//Accumulator Discharge
else if((user_Coil1_State == 1) && (user_Coil2_State == 0) && (user_Coil3_State == 0))
    board_lcd_print_text( 280 , 220, "P2P", LCD_FONT_ARIAL_16, LCD_COLOR_WHITE, LCD_COLOR_BLACK);
    board_lcd_print_text( 5 , 220, "Charge", LCD_FONT_ARIAL_16, LCD_COLOR_WHITE, LCD_COLOR_BLACK);
    board lcd print text( 200 , 220, "Regen", LCD FONT ARIAL 16, LCD COLOR WHITE, LCD COLOR BLACK);
    board_lcd_print_text( 80 , 220, "Discharge", LCD_FONT_ARIAL_16, LCD_COLOR_WHITE, LCD_COLOR_RED);
else
    board_lcd_print_text( 280 , 220, "P2P", LCD_FONT_ARIAL_16, LCD_COLOR_WHITE, LCD_COLOR_RED);
    board_lcd_print_text( 5 , 220, "Charge", LCD_FONT_ARIAL_16, LCD_COLOR_WHITE, LCD_COLOR_RED);
    board lcd print text( 200 , 220, "Regen", LCD FONT ARIAL 16, LCD COLOR WHITE, LCD COLOR RED);
    board lcd print text( 80 , 220, "Discharge", LCD FONT ARIAL 16, LCD COLOR WHITE, LCD COLOR RED);
```

Testing:

- Accumulator pre-charged to 800psi
- Pulsing discharge for increased distance
- Adjusting pressure relief valve to just under 3,000 psi limit
- 50-yard speed testing (old vs new)

OLD BIKE	
Person A Time (sec)	Person B Time (sec)
12.91	12.86
13.83	13.05
15.26	13.26

NEW BIKE			
Person A	Person B	Stratogy	
Time (sec)	Time (sec)	Sualegy	
15.77	17.46	Shifting	
16.45	17.34	Shifting	
15.37	14.46	3 rd Gear	
26.64	16.84	Acc. Dump	

Analysis: Transmission

- Pedal speed: 110 RPM MAX
- Wheel speed: 266 RPM, 20 mph
- Built a max of 400 psi in Pedal to Power
- Accumulator can be built to ~2600 psi

Gearbox Output Speed * (Input Gear/Output Gear)= Output Gear RPM (26" Tires)								
P1.6	Gearbox Ratio	gearbox output speed RPM	Pump Rpm	motor rpm	rear axle rpm	ground speed ft/min	rider input rpm	mph
1	1.05	115.5	462	222.49	89.48	608.50	110.00	6.91
2	1.32	145.2	580.8	279.70	112.50	764.97	110.00	8.69
3	1.61	177.1	708.4	341.15	137.21	933.03	110.00	10.60
4	2.04	224.4	897.6	432.27	173.86	1182.22	110.00	13.43
5	2.5	275	1100	529.74	213.06	1448.80	110.00	16.46
6	3.13	344.3	1377.2	663.23	266.75	1813.90	110.00	20.61

Lessons Learned

- Accumulator charging, valve, etc.
- Plumbing Need to design for backing up
- Transmission design
- Gear ratios and free wheel
- Time management
- Basic teamwork skills
- Communication skills
- Troubleshooting
- Basic Electronic Coding

Questions?

