

NFPA Education and Technology Foundation

Ohio University Final Presentation April 2024

Russ College of Engineering and Technology

Team Members

Michael Kennedy Team Advisor

Team Members

Austin Ireton Senior Madeline Hofmann Senior Dylan Kirkbride Senior Andrew Eckman Sophomore

Vehicle Design

Gear system is 7:1

Ability to charge accumulator by hand pump, pedaling, and regen 3 switch electronic system that actuates solenoids in the manifold which defines what circuit is operating

Changes From Last Year

- Fluid Power
- Added 10:1 gear box to rear gear system
- Total ratio changed from 5.7:1 to 7:1
- Redesigned hydraulic circuit to include a hydraulic manifold
- Frame has more permanent mounting capability
- Added hand pump to manifold to charge the accumulator
- Simplified electrical system
- Added ability to operate without electrical power

New Components Used

Manifold Block

Gear Box (10:1)

Fluid Power

The Manifold

Hydraulic Circuit

SOLENOID OPERATION				
FUNCTION	S1B	S1T	S2	
DIRECT DRIVE	-	-	-	
ACCUM CHARGE	ON	-	-	
REGEN BRAKE	-	-	ON	
ACCUM DUMP	-	ON	-	

Item	Qty	Model Code	Description	Manufacturer
1	1	FV-14212-M1	Manifold body	Source FP
2	3	CV08-NP-0.3-B-00	Check 1 to 2	Danfoss ICS
3	1	SV9-10N-F-0-0-00	Solenoid 3 pos. 4 way	Legacy-Eaton
4	2	RV1-10-S-0-36	Relief Direct Acting	Legacy-Eaton
5	1	241871-5	Pump Lever Operated 1 to 2 Push to pump .601 CID	Doering
6	1	SV1-10-3-0-00	Solenoid 2 pos. 3 way	Legacy-Eaton
7	1	FAR1-10-5-0	Flow Control Compensated, Screw Adjust	Legacy-Eaton
8	1	NV1-8-S-0	Needle Valve, Knob Adj	Legacy-Eaton
9	1	D1620-01-04SAE	Test Point Fitting, M16 x 2	Dynamic
10	3	300AA00101A	Coil 12VDC, Deutsch	Legacy-Eaton

FPA

Power

Hydraulic Circuit

Electrical Work

- Andrew Clabaugh helped to design a safe electrical circuit and ran the wiring to the solenoids
- System has less power draw than the former design
- Added reverse polarity protection as a safety feature

Machined clamps and

Manufacturing Process

sprockets

- Water jet sprockets
- Machined keyed shafts

Obstacles

- The bike frame was difficult to build on/around
- Length of manufacturing process with a small team
- Designing frame mounts for gear train

Lessons Learned

 Gear box created complication and unnecessary resistance

• Importance of being proficient on CNC machines, water jet, and manual mills

Questions?