

NFPA Education and Technology Foundation Final Review The University of Alabama at Birmingham Mentor: Dr. David Littlefield 4/12/24

UAB Hydraulic Bike Team

Frame & Hydraulic Circuit Team

Alex Murray

Wesley King

Aidan Calvert

Michael Crowder

Hydraulic Pump and Motor Team

Ethan Pickett

Carter Hefelfinger

Sunny Patel

Zack Burnett

2022-2023 Team's Design

2022-2023 Final Tadpole Recumbent Bike

2022-2023 SOLIDWORKS Model

Reservoir & Accumulator

2023-2024 Team's Design

Design Objectives for New Bike

- Approach
 - Started build from scratch rather than adding to past bike, considered recommendations from past team
- Improvements
 - Simplify Frame Design
 - Increase Accessibility to Components on Bike
 - Decrease Hydraulic Circuit Complexity
 - Improve Overall Efficiency
 - Torque, Speed, Bearings, etc.
 - Mitigate Steering Uncertainty
 - Ensure Proper Engagement of Regenerative Braking
 - Eliminate Excess Weight

Midway Review Summary

• Summary

- Our team received positive feedback and suggestions for improvements
- Requirements for each portion were met
- Final design was completed
- Feedback
 - Suggested case drain on hydraulic motor
 - Hoses did not need to be rated so highly
 - Correct motor schematic to depict bidirectional motion
 - Begin building as soon as possible, as it takes longer than expected

Hydraulic Circuit Design

Hydraulic Design:

- 4-mode design:
 - Charge accumulator
 - Direct drive (S1)
 - Regen (S2)
 - Accumulator drive (S3)
- One-motor system
- Includes pressure gauges/transducers, check, relief, and directional valves as well as a single ball valve

Advantages:

- Manipulate solenoids for boost
- Higher efficiency than initial design

Pink – Manifold

8

#6 SAE

T #6 SAE

8

62 #6 SAE

Green – Inlet

CD T-162A

> P #6 SAE

₹Q,

GD

SULENULD CHART					
3022	S1	S2	\$3		
Charge Accumulator					
Direct Drive	Х				
Regen		X			
Accumulator Drive			х		

))_	D						
	Bill of Materials						
	Item ID	Qty	Description	Model Code	Part Number		
	4.1,4.2,4.3	3	Flex Series 3 way directional valve	DMDA-XAN			
	3	2	Direct acting relief valve	RDDA-LAN			
	2	1	Free flow nose to side check valve	CXBA-XAN			
	5	1	Fully adjustable needle	NFDC-LAN			

M2 46 SAE

Hydraulic Circuit Approval

Hardware Selection - Frame

- Husky Bicycles T-124 Industrial Tricycle
 - Prebuilt frame: reduce fabrication time, minimize human error
 - Delta recumbent configuration: stability, storage space
 - Custom upgrades implemented to comply with safety and performance needs

Hardware Selection - Pump

- **Model:** SNP2NN/6,0RN06SAP1E6E5
- **CID:** .37 [in³/rev]
- Rotation: Clockwise
- Compound Gear Ratio: 6.38 [Increase RPM]
- **RPM:** 415
- Weight: 5.3 [lb]
- Mount: 2 bolt SAE A Flange
- Flow Rate: .66 [GPM]

Hardware Selection - Motor

- Model: SNM2NN/011BN06GAM6E6E5
- **CID:** 0.66 [in³ /rev]
- Rotation: Bi-directional
- Gear Ratio: 1.2 [Increase Torque]
- **RPM:** 194
- Torque with Gear Ratio: 332.4 [lb-in]
- Weight: 5.5 [lb]
- Mount: 2 bolt SAE A Flange

Hardware Selected - Hosing

Route	Hosing Size	
Reservoir to Pump	8M3K	
Pump to Manifold	4M3K	
Manifold to Motor	6M3K	
Motor to Manifold	4M3K	
Reservoir to Motor	6M3K	
Case Drain to Reservoir	6M3K	
Manifold Return Line	6M3K	
Manifold to Ball Valve to Manifold	4M3K	
Accumulator to Manifold	6M3K	

Hardware Selection - Accumulator

- Steelhead Composites
 AB30CN010G0N
- Style Bladder
- Maximum Pressure 3000 psi
- Pre-Charge 700 psi
- Weight 10 lbs

Hardware Selection -Brakes and Rotor

- Origin 8 Vise Hydraulic Disc Brakes
- Braking Force Capability: 8880 N
- 160 mm rear rotor
- 180 mm front rotor
- 2 calipers, 1 short and 1 long hydraulic brake line

Hardware Selection -Electronic Components

- HMI Screen: Exor ex705
- **Controller:** HY-TTC 32 Micro-Controller
- Display and controller will require a 24V DC battery
- Advantages
 - Customizable
 - Pressure Displays
 - Speed Reading
 - Previous Team Assistance

UAB Team's HMI Screen Display

Micro-Controller HY-TTC 32

Vehicle Construction

Frame Construction

Rear Plate Construction

Rear Plate Prototype

Differential Bracket Installation

Rear Plate Mounting

Vehicle Construction

Fitting/Production of Hosing

Installation of Hosing, Valves, Transducers, & Gauges

Installation of HMI and Wiring

Vehicle Testing and Improvements

- Removed differential with two shafts and replaced with thru shaft
 - Differential would cause axle to free spin when activating regenerative braking
- Added a rear brake to support full accumulator charge
- Used a composite plate instead of steel plate
 - Around 70% lighter while sustaining necessary strength
- Reconfigured components upon realizing rotation constraints
- Replaced hosing for accumulator from 4m3k to 6m3k
- Added additional line from reservoir to motor with check valve to allow for regenerative capabilities

Testing Results

- Test Run # 1 3/21
 - Demonstrated functionality of ¾ modes
 - Regen mode nonfunctional, fix found
- Test Run # 2 3/27
 - Demonstrated functionality of all modes
- Test Run # 3 3/30
 - Rider preparation and demonstration of bike reliability
- Test Run # 4 4/4
 - Testing different racers and stances

Final Vehicle

Lessons Learned

Technical Lessons

- Spline shaft problem
- JB Weld
- Diff with Regen/braking
- Hosing sizing
- Technological issues take up time
- Hydraulics

Overall Lessons

- Communication
- Teamwork
- Critical Thinking
- Seeking help/advice
- Time Management
 - Presentation Skills

Acknowledgements

- NFPA
- Hubbell
- SunSource
- Danfoss
- Ernie Parker
- Richard Lyman

- Josh Scarbrough
- Dr. Selvum Pillay
- Josh Rodman
- Drew Maharrey
- Steve Thompson
- Dr. David Littlefield

Thank you! Questions?

