Fluid Powered Vehicle Team

NFPA Education and Technology Foundation

GROUP MEMBERS: MATT ANDRUS, ISAIAH PARFAIT AND DYLAN BABINEAUX

GROUP ADVISORS: YASMEEN QUDSI AND JOHN CARROLL

INDUSTRY MENTORS: BOB MOSEY AND EDGAR TORRES

Team Introductions

Isaiah Parfait

- Team Leader
- Documentation
- Structural Design

Team Introductions

Dylan Babineaux

- Hydraulics
- Programming
- Electronics

Team Introductions

Matthew Andrus

- Vehicle Construction
- Presentations
- Safety

2022-2023 Vehicle

Background

- The '22-'23 UL FPVC Team managed to place 1st overall at the competition
 - 1st in Sprint
 - 3rd in Regenerative Braking
 - 1st in Endurance
 - Below 3rd in Efficiency

Team	Top Speed(mph)	Efficient(%)	Weight(lb)	Sprint(s)
2022-2023	28	35	178	18.04

Vehicle Design

- Stage 1: Frame Modifications
 - Extended arms that hold up the seat
 - Welded seat in place
 - Added rear extension for the bearings, rear rack

- Stage 2: Mounting Components
 - Welded together mounting plates for pump and motor
 - Constructed rear rack
 - Mounted pump, motor and manifold
 - Mounted bearings, rear drive wheel/axle

- Stage 3: Hydraulic Installation
 - Finalized all hose positionings
 - Sized and installed hydraulic lines
 - Tested for leaks within the system

- Stage 4: Electronics Implementation
 - Tested electronic subsystem before installation
 - Mounted electrical box, battery mount, and button housings
 - Finished wiring

Electronic Subsystem

Consists of:

- 5 LED Push Buttons
- 2 Arduino Microcontrollers
- 3 Solenoid Valves
- 3 5V Relays
- 2 12V Batteries
- 1 LCD Screen
- 1 Pressure Transducer

First Arduino:

 Reads button presses and sends impulses to matching relays to match solenoid positions with drive mode

Second Arduino:

 Reads transducer voltage, converts voltage to pressure, displays pressure on LCD screen

NFPA
Fluid Power
Phallenae

Drive Mode	Solenoid Valve 8	Solenoid Valve 9	Solenoid Valve 10
Accumulator Charge	1	0	0
Accumulator Drive	1	1	0
Direct Drive	0	1	0
Regenerative Braking	0	0	1
Coasting	0	0	0

Rear Wheel Assembly

Consists of:

- Fully Threaded 3/8" Steel Axle
- 22" Rear Wheel
- $2 \frac{3}{4}$ " Bore Pillow Block Bearings
- 2-3/8" Round Standoffs
- 23 teeth, 5/8" pitch flat sprocket
- Dial tensioner
- 20 teeth, 5/8" pitch sprocket
- Motor mount
- ANSI 50 Chain

Specs:

- Motor, Gear, 1.025 CID, Keyed Shaft .625", Bi-rotation, external drain
- Gear ratio: 1.15 Rear Wheel to Motor

Pedal Assembly

Consists of:

- Pump mount
- Pedal sprocket 45 teeth, ½" pitch
- Pump sprocket 18 teeth, ½" pitch
- ANSI 40 Chain
- Plexiglass Mount*ADD SOLIDMODEL*

Specs:

- Pump, Gear, 0.659 CID, Keyed Shaft .625", CW rotation
- Gear Ratio: 2.5 Pedal:Pump(Changed during testing)

22'-23' Hydraulic Circuit

Drive Mode	Solenoid Valve 8	Solenoid Valve 9	Solenoid Valve 10	
Accumulator Charge	1	0	0	
Accumulator Drive	1	1	0	
Direct Drive	0	1	0	
Regenerative Braking	0	0	1	
Coasting	0	0	0	
		Ieger	nd	
		() Non-energized	

ITEM	I QTY	MODEL CODE	DESCRIPTION	MANUFACTURER
1	1	NV1-8-S-0	Cartridge Valve, Flow Control, Needle Valve	Danfoss
2,3	2	CF-1P-210-A-SAE	Gauge, 0-3000 PSI, SAE -4 male adjustable stem. 2-1/2" diameter.	Dynamic FCI
4	1	RV1-10-S-0-36	Cartridge Valve, Relief, Direct Acting	Danfoss
5	1	DSV2-8-B-0	Cartridge Valve, Shuttle, High side, Ball type	Danfoss
6,7	2	CV08-NP-0.3-B-00	Cartridge Valve, Check, 1 to 2, size 8	Danfoss
8	1	SV1-10-3-0-00	Cartridge Valve, Solenoid, 2 pos. 3 way Spool 1-2/1-3	Danfoss
9,10	1	SBV1110C000	Cartridge Valve, Solenoid, 2 pos. 2 way Bi-poppet, normally Closed	Danfoss
11	1	A13100-3	Accumulator, 1 gallon, SAE -20 port	Accumulators Inc
12	1	111.20.243.00	Pump, Gear, 0.659 CID, Keyed Shaft .625", CW rotation	Danfoss
13	1	121.20.045.00	Motor, Gear, 1.025 CID, Keyed Shaft .625", Bi-rotation, external drain	Danfoss
14	1		Hydraulic Reservoir	
15	1		Manifold Body	SunSource

(3)

11

V

Energized

- Shown to the right is the current year's hydraulic manifold circuit. The circuit has 5 drive modes:
- Accumulator Charge
- Accumulator Drive
- Direct Drive
- Regenerate Braking
- Coasting

Accumulator Charge Drive Mode

- Bike remains stationary while pedaling to charge the accumulator.
- This mode will be used to get the accumulator up to pressure for the sprint and efficiency race

Accumulator Drive Mode

- Bike releases stored pressure in the accumulator, propelling the bike forwards.
- This mode will be used to start the sprint and efficiency race.

Direct Drive Mode

- The pressure sent to the accumulator by pedaling is immediately sent to the motor, so no pressure is stored in this mode.
- This mode will be used for the endurance race.

Regenerative Breaking Drive Mode

- This mode will be used in the regenerative braking race.
- This drive mode allows the motor to charge the accumulator, converting the kinetic energy from going downhill into pressure in the accumulator.

Coasting Drive Mode

- The coasting drive mode works similarly to the regenerative braking drive mode, except that pressure is not stored in the accumulator.
- Hydraulic fluid is routed from the reservoir through the motor and back into the reservoir, allowing the vehicle to coast.

Calculations

Assumptions used in calculations:

- 5% Grade
- Average combined weight of each rider and bike are approximately 370lbs(using weight of last year's design, 178lbs)
- 22in wheels
- Rolling resistance coefficient on concrete = 0.002

Calculations

• Pulling force, rolling resistance, and torque

$$F_{Pull} = sin(tan^{-1}(0.05)) * 370lbs = 18.48 lbs of pull$$

 $F_{RR} = \cos(\arctan(0.05)) * 370 lbs * 0.002 = 0.739 lbs$

T = 11in * (18.48lbs + 0.739lbs) = 211.38lb * in

CIR of the motor and the pump (assumed gear ratio from the pedals pump is 5:1 & the rear wheel - motor gear ratio is 1.7). The previous team found these ratios to be optimal for the sprint *A 1.025 CIR motor and a 0.659 CIR Pump will be used due to wait time concerns*

$$CIR(Motor) = \frac{(211.38 \ lb * in) * (2\pi)}{1000} = 1.328 \ in^{3}/rev$$
$$RPM(Motor) = \frac{336 * 30mph}{22 \ in * 1.8} = 254.54 \ RPM$$
$$GPM = \frac{254.54 \ RPM * 1.476 \ CIR}{231} = 1.63 \ GPM$$
$$CIR(Pump) = \frac{2.93 \ GPM * 231}{90 \ RPM * 5} = 0.835 \ in^{3}/rev$$

Calculations

Line sizing. The ISO standard for high pressure lines states that flow should not exceed 20 ft/s, and 5 ft/s at the inlets. Using the formula below, we determined we will need 1/4" hosing throughout and 3/8" hosing at the inlets.

$$A_{Net} = \frac{0.32 * 1.63}{20} = 0.026 \ in^2, D = \sqrt{\frac{4 * 0.026}{\pi}} = 0.182 \ in$$

Ordered from online source Frame selection criteria:

- Can support the combined weight of the rider and components ~300 lbs.
- Large enough to house all components.
- Steel(for welding purposes)

Accumulator, 1 gallon, SAE -20 port

- From Accumulators, Inc on SunSource catalog \$935.00
- Model number: <u>A13100-3</u>

Motor, Gear, 1.025 CID, Keyed Shaft .625", Birotation, external drain

- From Danfoss\Eaton on SunSource catalog -\$405.00
- Model Number: <u>SNM2NN-/-017-B-N-06-GA-</u> <u>M6-E5-E5-NN-N-/-NNN-N-N</u>
- Originally desired a 1.3 CIR Hydraulic motor, but due to wait time, we opted to go with the 1.025 CIR Motor from the catalog for convenience.

Pump, Gear, 0.659 CID, Keyed Shaft .625", CW rotation

- From Danfoss\Eaton on SunSource catalog - \$293.00
- Model Number: <u>SNP2NN-/-011-R-N-</u> <u>06-GA-P1-E6-E5-NN-N-N-/-NNN-N-N</u>
- Like the motor, we sized down the pump due to wait time concerns.

Hosing

- Connector Specialists Inc. Lafayette
- Provided us with hosing, adapters, and fittings

Electronic drive mode controls and screen

- Buttons will open and close the solenoid valves
- Allows quick switching between different drive modes

Safety

Proposed safety features:

- Added delays in code for switching between drive modes
- Ensured no sharp edges on any manufactured parts
- Added front chain cover
- Added algorithm that disallows buttons to be pressed simultaneously
- Ensured chain alignment for front and back chains

Team Budget

Component		Quantity	Total
SunSeeker ECO-TAD SX	\$1,484.00	1	\$1,484.00
SUPERFASTRACING 2.5 Gallon 9.5L Aluminum Level Racing Sender Drift Fuel Cell Gas Tank Polished	\$69.40	1	\$69.40
ARDUINO MEGA 2560 REV3 [A000067]		2	\$0.00
Wheel + Tire	\$95.85	1	\$95.85
Chains + Sprockets	\$179.83	1	\$179.83
Sheet Metal	\$340.22	1	\$340.22
Electronics	\$157.59	1	\$157.59
Easy-to-Weld 4130 Alloy Steel Round Tube, 0.035" Wall Thickness, 5/8" OD, 6 ft	\$37.16	1	\$37.16
Component Mounting	\$287.30	1	\$287.30
Check Valve Line Body	\$75.93	1	\$75.93
Rear Wheel Components	\$130.96	1	\$130.96
Bike Accessories	\$45.95	1	\$45.95
Shipping Costs	\$159.59	1	\$159.59
		Total	\$3,063.78
		Budget	\$4,000.00
		Remaining	\$936.22

Catalog Budget

Component	Manufacturer	Model number	Cost	Quantity	Total
Accumulator, 1 gallon, SAE -20 port	Accumulators Inc	A13100-3	\$935.00	1	\$935.00
Fitting, Test Point- Accumulator Side. SAE -6 Male. M16-2 test thread.	Dynamic FCI	D1620-01-06SAE	\$18.00	1	\$18.00
Gauge, 0-3000 PSI, SAE -4 male adjustable stem. 2-1/2" diameter.	Dynamic FCI	CF-1P-210-A-SAE	\$23.00	2	\$46.00
Motor, Gear, 1.025 CID, Keyed Shaft .625", Bi-rotation, external drain	Danfoss	121.20.045.00	\$405.00	1	\$405.00
Pump, Gear, 0.659 CID, Keyed Shaft .625", CW rotation	Danfoss	111.20.243.00	\$293.00	1	\$293.00
Cartridge Valve, Relief, Direct Acting	Danfoss	RV1-10-S-0-36	\$40.00	1	\$40.00
Cartridge Valve, Shuttle, High side, Ball type	Danfoss	DSV2-8-B-0	\$22.00	1	\$22.00
Cartridge Valve, Solenoid, 2 pos. 2 way Bi-poppet, normally Closed	Danfoss	SBV1110C000	\$128.00	2	\$256.00
Cartridge Valve, Solenoid, 2 pos. 3 way Spool 1-2/1-3	Danfoss	SV1-10-3-0-00	\$43.00	1	\$43.00
Cartridge Valve, Solenoid Coil, 12VDC Deutsch, H Type	Danfoss	300AA00141A	\$25.00	2	\$50.00
Cartridge Valve, Solenoid Coil, 12VDC Deutsch, J Type	Danfoss	300AA00101A	\$19.00	1	\$19.00
Cartridge Valve, Solenoid Coil, 12VDC DIN, J type	Danfoss	300AA00081A	\$27.00	1	\$27.00
Cartridge Valve, Check, 1 to 2, size 16	Danfoss	CP102-1-B-0-005	\$40.00	1	\$40.00
Cartridge Valve, Check, 1 to 2, size 8	Danfoss	CV08-NP-0.3-B-00	\$12.00	1	\$12.00
Cartridge Valve, Flow Control, Needle Valve	Danfoss	NV1-8-S-0	\$26.00	1	\$26.00
Fitting, plug, -4 ORB male, external hex	Brennan	6408-04-0	\$1.00	1	\$1.00
				Tatal	62 222 00

 I otal
 \$2,233.00

 Budget
 \$5,000.00

 Remaining
 \$2,767.00

Bike Testing

Thank you to our mentors and sponsors for their time and efforts!

Thank you to the NFPA and all companies who offered their services!

NFPA Education and Technology Foundation

ATIONA/

Questions?

NFPA Education and Technology Foundation

