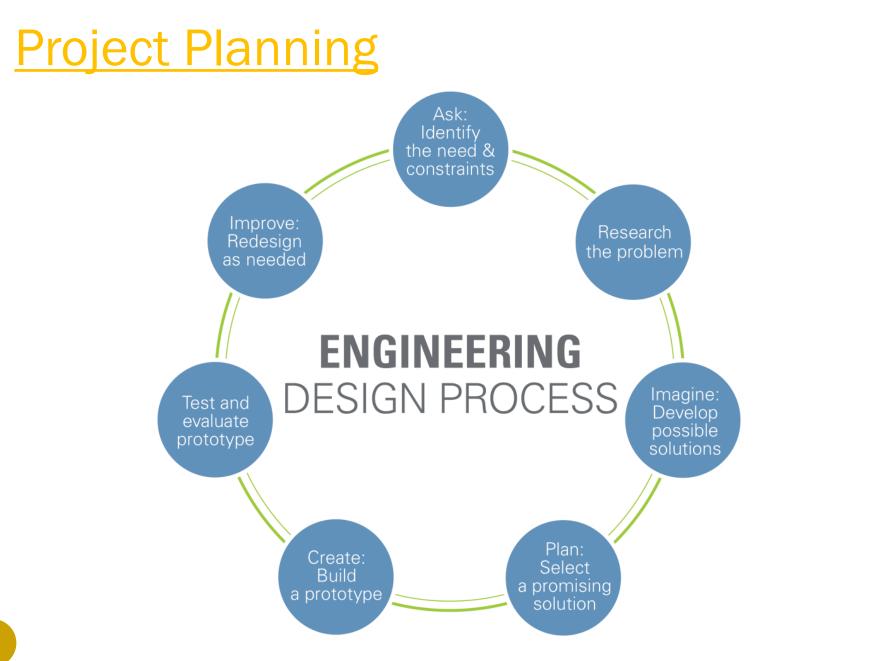
Report and Design Presentation Chainless Challenge 2015/2016 - WMU

Western Michigan University

Mechanical Team

Andrew Bonter Cameron Brown Aaron Huntoon Austin Vojcek


Electrical Team

Dex Naranjo Luis Placido Mojtaba Al Jaffar

Faculty Advisors Dr. Alamgir Choudhury Dr. Jorge Rodriguez

Overview

- Project Plan/Objectives
- Design Analysis and Drawings
 - Mechanical
 - Electrical
- Actual Test Data
- Cost Analysis
- Lessons Learned and Conclusions

Objectives - Mechanical

Design, fabricate, and test a unique human-assisted hydraulic system

- Create a system to meet regulations/objectives
- Include green engineering and sustainable process
- Minimize cost of competition vehicle
- Innovate from previous years' designs

Evaluation Criteria

Safety/Reliability

- Maintain safe operating pressure
- All components safely mounted

Innovation

• Utilize different hydraulic components

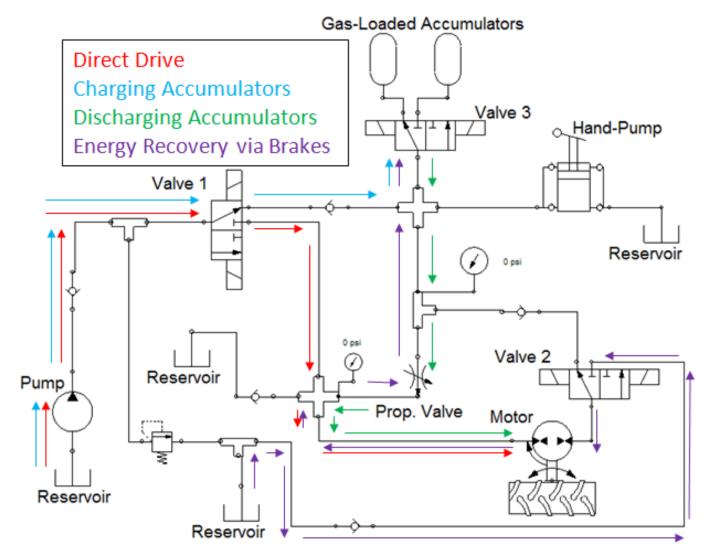
Manufacturability

• Ease of assembly and fabrication

Cost

Lowest cost that satisfies objectives

Marketability


• Customer-focus on unique design

Design Analysis

Design Concepts

- <u>Power Transmission System</u>
 - Hydraulic fluid was the selected medium
- <u>Vehicle Type</u>
 - Research conducted on multiple frame types
- <u>Brainstorming Ideas</u>
 - Reservoir placement optimization
 - Frame extension
 - Aerodynamic shell
 - Electrical control system
 - Hub utilization

Hydraulic System

Frame Design

- Factors weighted on importance scores averaged
- Frame extension
- Criteria:
 - Weight
 - Aerodynamics
 - Mounting Area
 - Adaptability
 - Etc. (see matrix)

Frame Decision (Upright Bicycle)

		Upright	Tricycle	Recumbent
Factors	Weight Factor	Average	Average	Average
Safety	14	6	7	7
Weight	13	9	3	5
Adaptability	12	5	8	5
Mounting Area	11	5	8	5
Maintenance	10	8	6	5
Operability	9	7	7	3
Cost	8	8	5	3
Stability	7	6	8	9
Load Limit	6	5	8	7
Drag	5	7	3	7
Maneuverability	4	8	5	5
Climbing	3	4	7	6
Rider Comfort	2	7	6	9
Aesthetics	1	9	3	6
	Total Score:	668	630	577

Pumps and Motors

Criteria:

- Safe for Mounting
- Weight
- Efficiency
- Displacement & Flow Rate
- Dimensions

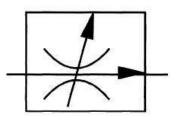
Pump/Motor Analysis

Pumps	Flow Rate out	Hydraulic HP	Volume Occupied	Total Efficiency @ 500 RPM	Weight	Displacement volume	Cost
F 11-5 P@800	2206.9 CC/m	0.271	83.66 in ³	90.4%	11 lbs	4.9CC/rev	\$600
F 11-10 P@400	4315.3 CC/m	0.265	118.13 in ³	88.4%	16.5 Ibs	9.8CC/rev	\$715
AM1C-31	2558.9 CC/m	0.252	38.25 in ³	84% @ 600 RPM	4 lbs	5.1 CC/rev	\$800
PGP505 P@800	2270.58 CC/m	0.234	34 in ³	78%	5.26 Ibs	6CC/rev	\$250

* H3 Eliminated due to space occupied by the pump

Accumulators

Criteria


- Capacity
- Energy Density
- Dimensions
- Weight
- Cost

Accumulator Analysis & Data

Parker Accumulators	Price (\$)	Gal	Weight (lb)	Weight (w/ oil) lbs	PSI	Dims.	Energy Density (ft-lb)/lb	
BA005B3T01A1	\$704.00	0.65	16	20.98	3000	ø4" x 15"	1786.45	
AD280B25T9A1	\$672.00	0.74	21	26.68	3600	Ø6.75" x 9.5"	1922.11	
BA01B3T01A1	\$374.57	가	34	41.68	3000	ø6.75" х 17"	1385.56	
T0BUL4.5AL-20	\$850	1.08	20	28.29	3000	ø4" x 24"	2204.67	

Valves, Ports and Connections

- 3-way flow control valves (4)
- Variable flow control valve (controlling accumulator pressure release) (1)
- Braided Stainless Steel lines (18ft)
- 2.5 Gallon Rigid Reservoir (1)

Gearing and Hubs

Gearing to Pump

- Highest input ratio: 1 to 11.62
- Lowest input ratio: 1 to 3.791

Motor to Wheel

- Highest output ratio: 1 to 1
- Lowest output ratio: 1 to .625

<u>Hubs</u>

- Front Hub: Shimano Alfine SG-S501
- Rear hub: Strumey Archer S3X

Objectives - Control System

Design and build an electronic control system to reconfigure the hydraulic circuit for all modes of operation through a simple user interface.

The system also should:

- Provide visual feedback on the status of the hydraulic circuit.
- Set efficient flow parameters for flow release from accumulators.
- Contribute to enforcing safety.

Design Criteria

Intuitive and Simple User Interface

- User commands issued by pressing on pushbuttons.
- Use as few pushbuttons as possible to cover all the control functions.
- Choose appropriate placement to support functionality.

Real-Time System Feedback

• Include graphical display to show vehicle speed, hydraulic pressures, current operation mode, and alarms in real time.

Design Criteria

Modular Design

- Control system to be developed in separate modules with specific functions to streamline prototyping, testing, and final assembly.
- Add flexibility for spatial distribution relative to other system components.

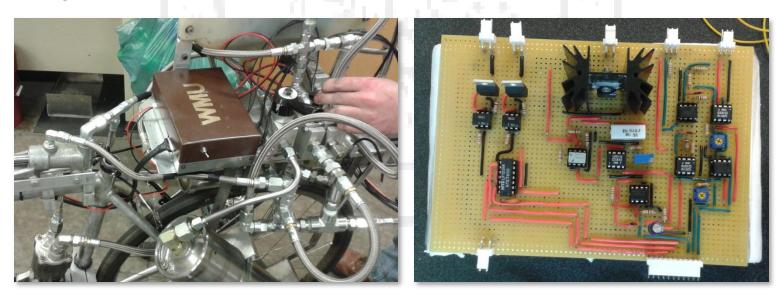
Low Cost

• Achieve lowest cost that satisfies the objectives.

System Components

Control Panel:

- STM32F4 Discovery microcontroller board
- LCD graphic display µLCD-43PT
- Custom-made interface board
- Connector headers for peripherals
- Push and toggle buttons
- Rigid enclosure



System Components

Power Control Box:

- PWM solenoid-driver circuits
- Linear voltage-controlled current source circuit
- Linear voltage isolator circuits
- Rigid enclosure

System Components

µLCD-43PT Display Code:

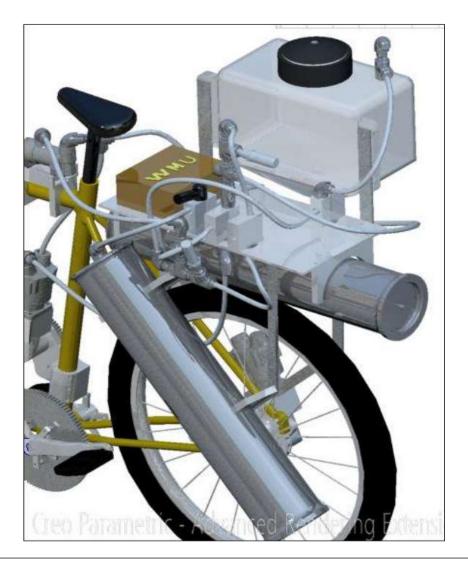
- 4D Graphics Language Developed with 4D Workshop 4
- Generates, displays, and animates graphic elements

STM32F4 Discovery Microcontroller Code:

- C Language Developed with IAR Embedded Workbench
- Processes user input to implement logic for hydraulic operation modes
- Calculates and displays sensor data
- Controls all other components in the system

Final Product and Testing

- Upon completion the final bike weight was about 168 pounds, including hydraulic fluid
- Functional testing was done on campus <u>Testing included</u>:
 - Direct Drive
 - Accumulator charging time
 - Efficiency testing
 - Electrical control testing
 - Sprint testing
 - Endurance testing

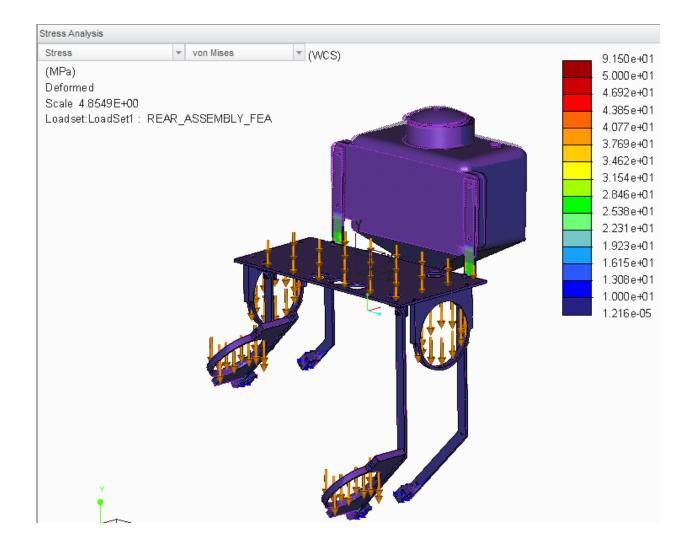

Design Drawings

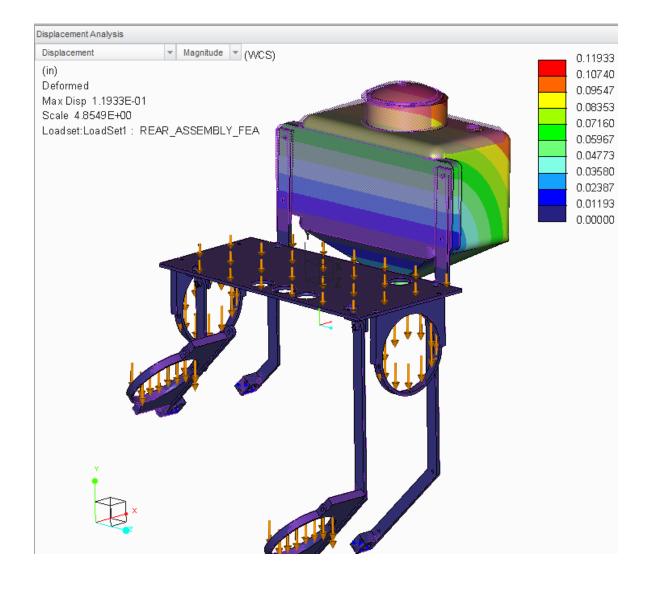
- CAD and Bracket Analysis
- CAD Models
 - Handlebars, pushbuttons, and display screen
 - Rear mounting plate and components
 - Front hub, pump mount, and gear train
 - Completed bike (including manikin)

Handlebars, pushbuttons, display

Rear mounting plate and components

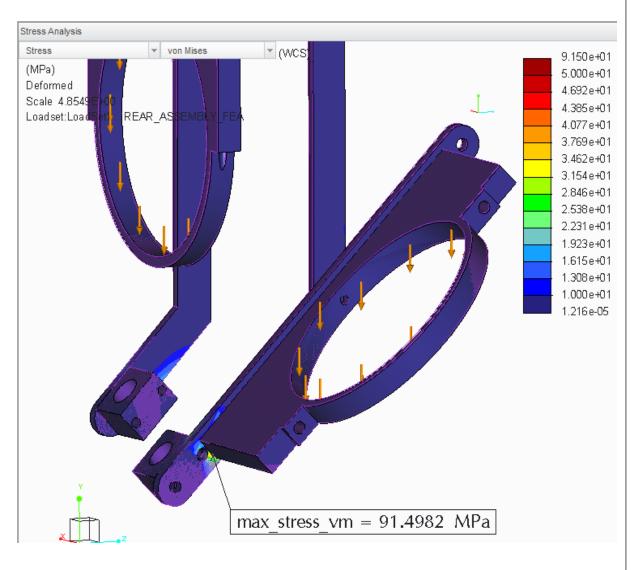
Front hub, pump mount, and gear train

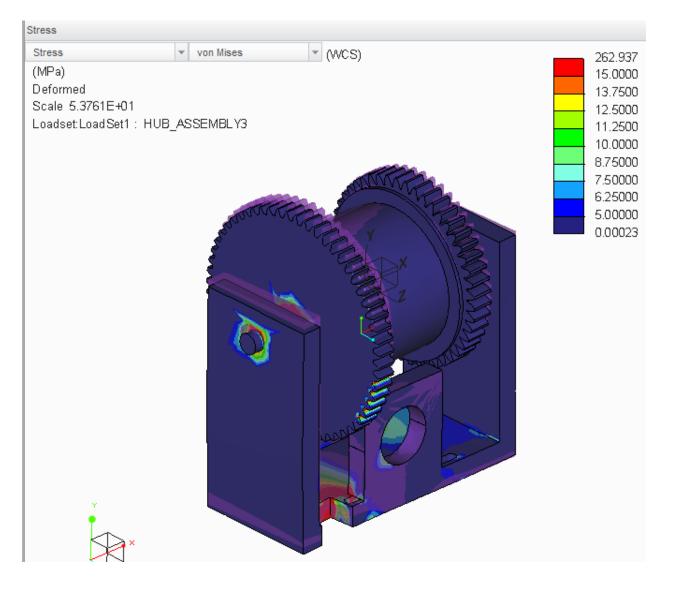


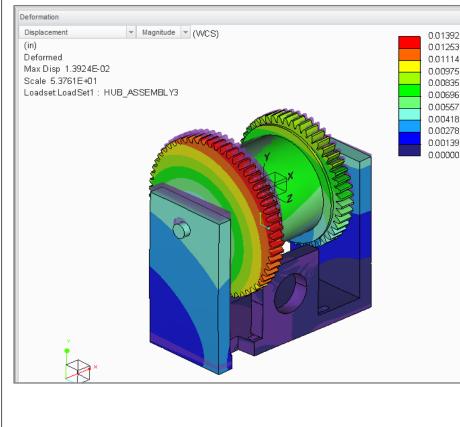

Completed Bike

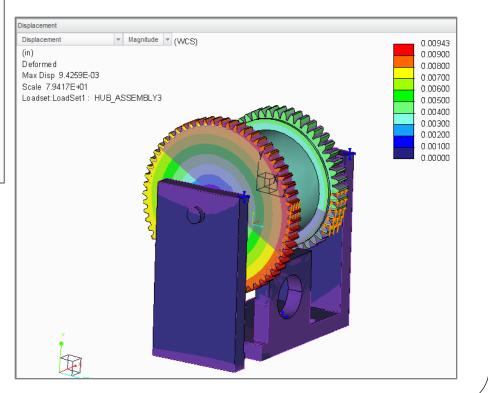
rame Stress Analysis	
Stress von Mises (WCS) Top and Bottom of shell (MPa) Deformed Scale 3.6225E+01 Loadset:LoadSet1 : FRAME_FEA	232.936 100.000 87.2156 74.4312 61.6469 48.8625 36.0781 23.2937 0.00010
6.3698-99 -8.85102 16.8616 0 227359 max_stress_vm = 232.936 MPa	6
r Contractions of the second s	9.1195-01 11.9537 <u>3.60102</u> 0.573353

Final Design


Material of Brackets


- (Connecting to frame) Steel
- (Accumulator rest, Component Plate) Aluminum


Yield Strength


- (Steel 1040) 415 MPa
- (Aluminum 2014-O)
 414 MPa

Source: Mott R., (2014) Machine Elements in Mechanical Design, Fifth Ed.

Cost Analysis (500 units)

Subsystem	Description	Part Cost	Labor Cost	Quantity Discount	New Part Cost	New Labor Cost
Hydraulic Components	Pumps/Motors, Accumulators, Hand pump, Reservoir	\$3,573.96	\$0.00	Bulk discount: 25%	\$2,680.47	\$0.00
Valves	Pressure relief valve, check vlave, proportional valve, directional control valve	\$757.64	\$0.00	Bulk discount: 25%	\$568.23	\$0.00
Bicycle Components	Bicycle frame	\$478.99	\$0.00	Bulk discount: 30%	\$335.29	\$0.00
Hydraulic Connections	Hose, fittings, adapters	\$730.47	\$0.00	Bulk discount: 30%	\$511.33	\$0.00
Gear Train	Front hub, rear hub, misc. gears	\$665.22	\$90.00	Bulk discount: 20%	\$532.18	\$0.00
Electronics	Control panel, power box, etc.	\$250.98	\$0.00	Bulk discount: 40%	\$150.59	\$0.00
Fabrication	misc. materials, aluminum and steel	\$181.12	\$1,770.00	Bulk discount: 35%	\$117.73	\$885.00
Misc. materials	bolts, nuts, screws	\$88.43	\$0.00	Bulk discount: 50%	\$44.22	\$0.00
Cost of Parts and Materials		\$6,726.81	5. 5		\$4,940.03	6
Cost of labor	Parts preparation		\$1,860.00			\$885.00
Cost of labor	Assembly		\$360.00		Jig/fixture assembly and set up	\$120.00
Total Cost			\$8,946.81			\$5,945.03
Percent Reduction						33.55%
Total Cost (500 units)						\$2,972,514.50

Pump and Motor Testing

- Testing conducted at Parker Aerospace
- Due to nature of their business, unable to retain hard data
- Information learned on the function of our pump/motor:
 - For our application they have the ability to flow either direction
 - Case drain not needed

Accumulator Testing and Trial Runs

- One accumulator tested at a time isolate any issues and reduce number of variables
 - First 2 runs = horizontal accumulator
 - Third run = angled accumulator
- Runs made in building (400m in length)
- Nitrogen pre-charge of 500 psi

Accumulator Testing and Trial Runs

 One final run with both accumulators in use was made outdoors – bike traveled ¹/₂ mile (~800 meters)

Run #1		Run	#2	Run #3		
Distance (m)	PSI	Distance (m)	PSI	Distance (m)	PSI	
0	2600	0	2600	0	2600	
10	1600	10	1650	10	1620	
100	1330	100	1350	100	1340	
150	1150	150	1170	150	1160	
200	900	200	910	200	900	
300	810	300	810	300	810	
400	720	400	720	400	720	

Post-Race Notes

- Bike arrived damaged flat tire
- Parts of the hydraulic circuit malfunctioned before the efficiency race adapt circuit to isolate section

Lessons Learned and Conclusions

- Design refinement cycle
 - Test, analyze, improve, repeat
- Project planning and time management
- Have rational and reasoning behind every decision
- More background knowledge on major components needed

Questions?

We want to thank you for your time from the WMU 2015-2016 Chainless Challenge Team

Go Broncos!!