

TABLE OF CONTENTS

Background	2
Introduction	3
State of Mobile Industry Communications	4
Future Trends in Connectivity	5-6
Types of Devices	7
Communication Methods	8
Types of Mobile Communication Protocols	9
Pros and Cons of Mobile Communication Protocols	10-12
End Market Applications of Mobile Communication Protocols	13-15
Glossary of Terms	16-17
Task Force Participation	18-20

BACKGROUND

As defined in the 2023 NFPA Technology Roadmap, there are many machine-level technology trends that are actively shaping the future of the fluid power industry. These trends include the increasing electrification, connectivity, and autonomous functionality of both the mobile and industrial machines that use fluid power in their power or control systems.

In September 2023, NFPA launched its Technology Task Force to better understand these trends, and to engage stakeholders across the supply chain in the development of the resources and connections that will be needed to keep fluid power positioned as an actuation technology of choice on mobile and industrial platforms.

The Task Force identified several projects that would help it fulfill this mission, including:

• **Communication & Data Protocols for Mobile Equipment.** Produce a white paper that summarizes the communications and data protocols most commonly used on mobile equipment. Collect and present case studies showing successful integrations with fluid power systems.

The Task Force met multiple times to discuss this project, to share information and resources, and develop a set of responses and recommendations. This is the report of the Task Force's final consensus, published on August 1, 2024.

This document is the intellectual property of NFPA. It is not for reprint, resale, or redistribution, in whole or in part, without the written permission of NFPA. It can be used, with permission obtained from NFPA, by organizations that wish to develop new technologies or applications that benefit the industries, markets, and people served by fluid power. By putting forth this report, representing a broad consensus of industry players, NFPA demonstrates a commitment both to collaboration and to the long-term growth and sustainability of fluid power technologies.

INTRODUCTION

This document is a summary of the various networks and communication protocols utilized currently in mobile equipment as well as future developments and potential technical advancements in this field.

At a high level, networks and communication protocols in this document refer to the various ways electronic devices "talk" to one another electronically onboard a mobile vehicle, also known as invehicle connectivity. These communication networks can either be <u>wired</u> or <u>wireless</u> and communicate over multiple different protocols for different application needs and requirements.

Communication protocols definition: A system of rules that allows two or more entities (devices) within an electronic system to transmit information via any variation of a physical quantity. The protocol defines the <u>rules</u>, <u>syntax</u>, <u>semantics</u>, <u>synchronization</u>, <u>authentication</u>, <u>error detection and</u> <u>correction</u>, <u>and signaling</u>. They are important because they create consistency and universality for the sending and receiving of messages over a network which may impact machine safety, reliability, robustness, and other factors. These protocols can be implemented in hardware, software, or very often, both.

STATE OF MOBILE INDUSTRY COMMUNICATIONS

While there are many types of networks and protocols available and currently in use, the mobile industry has primarily adopted CAN as a preferred network and SAE J1939 as the preferred protocol. The primary reason for the widespread use of CAN-J1939 is that diesel engine manufacturers adopted this on the engine ECU units beginning in the 1980s. Initially this was in the form of SAE-J1587 but due to speed limitations, it developed into SAE-J1939 by the early 2000s on top of the CAN 2.0 system created in 1991.

Since the vast majority of vehicles initially only had the engine ECU as the primary electronic component, and as OEMs wanted to reduce wiring costs without development effort, it made sense to adopt the engine protocol of SAE-J1939 into non-engine components for a cohesive in-vehicle communications system.

While CANbus network was developed by the automotive industry decades ago, and then the mobile industry adopted it in the 1980s, automotive companies have since implemented much faster and less expensive networks to meet the needs of changing and future applications in the market.

The adoption of wireless controls and wireless connectivity of vehicles has also expanded the range of networks and protocols.

These factors along with the growing application demand for AI, automation, safety, and efficiency have necessitated the review of what networks and protocols are best used for what applications in the mobile industry.

FUTURE TRENDS IN CONNECTIVITY

Technologies are ever evolving in the vehicle connectivity space. A multitude of vehicle networks and protocols are now being considered or used within the mobile industry as application needs and requirements change.

Below is an overview of the trends that are driving new considerations of the network and protocols.

- 1. Functional safety. Any safety-critical system within a vehicle typically must have functional safety built into it. Steer-by-wire, vision recognition, geo-fencing, and automation are a few of the trending technologies that are pushing the requirements for higher levels of safety in vehicles and thereby on the communications bus.
 - a. Definition of functional safety. Refers to aspects of vehicle safety that pertain to the correct functioning of the system, vehicle, or device. Where failure or fault of a component, system, or vehicle can lead to severe consequences such as injury, death, or damage to property, it is crucial to implement some level of functional safety into this component, system, or vehicle.
 - b. For communications between devices, IEC 61784-3 covers the transmission of safetyrelevant messages and is in alignment with IEC 61508 for overall vehicle functional safety. Communications protocols that fall under this typically use a "black channel" to ensure functional safety while using an "unsecured" standard channel. For example, Ethernet is an unsecured standard protocol while Safety Over Ethernet is the functional safety version of the protocol that utilizes a black channel for fault checking. There are two SAE-J1939 protocol variants, but the main one is SAE-J1939-76 which implements checksums and sequence counters.
 - c. For reference (DOES NOT DIRECTLY APPLY TO FUNCTIONAL SAFETY OF COMMUNICATIONS PROTOCOLS BUT TO FUNCTIONAL SAFETY IN GENERAL ON VEHICLES)

Current state-of-the-art requirements for safety-critical functions in general on offhighway vehicles fall under:

i. Standards to follow: ISO 13849 covers methodology, recommendations, and guidance for the design of machinery in safety-related parts of the control system including software.

- ii. Standards to follow: ISO 25119 covers general principles for design and development of safety-related controls systems for tractors used in agriculture and forestry. Also can apply to self-propelled ride-on machines in agriculture.
- iii. IEC 61508 Functional Safety Certification: This third-party certification includes industry-specific variants such as ISO 26262 for Automotive. IEC 61508 includes requirements based on Safety Integrity Level (SIL) and Automotive Safety Integrity Level (ASIL) which outline the level of fault tolerance the system or component needs to address and the corresponding SIL/ASIL level.
- 2. Cybersecurity. Another fast-evolving area that all stakeholders need to be aware of is cybersecurity for mobile machines. Most of the existing communications systems that are currently being used for mobile vehicles are not secure and would have expense related to making them secure against intrusion and hacking. The positive note is that vehicles that are not equipped with connectivity (telematics) are more immune to this issue since without remote access, a physical presence at the vehicle would be required. But the fast adoption of cellular connected systems presents significant challenges given the critical function many mobile vehicles serve in our mining, military, construction, and agriculture space.
 - a. Standard. While on-road standards like ISO/SAE 21434 are currently being released for the automotive industry vehicle security, there are NO standards, unified approach, or coordination currently for off-highway vehicles. Best practice would be to understand and work with the ISO/SAE 21434 automotive standard and undergo a threat assessment for each vehicle platform to plan out a roadmap for adoption and implementation of key threat solutions.
- **3.** Increased connectivity adoption. The most obvious trend for communications of mobile vehicles is that there will be a continued acceleration in the adoption of connected vehicles requiring higher bandwidth for onboard and offboard communications.

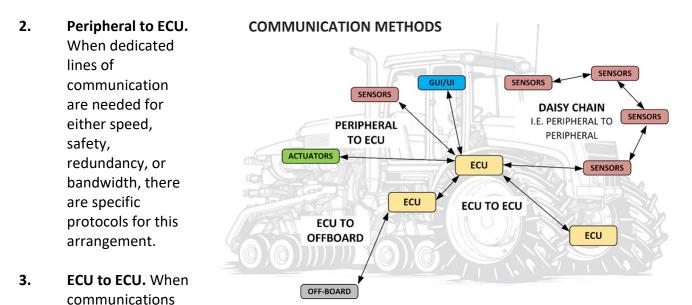

TYPES OF DEVICES

There are five main types of devices onboard vehicles that communicate with each other:

- 1. ECUs. Electronic control units are devices that typically have microprocessors and can execute logic, math, or other advanced computational features. ECUs can both send and receive information to other ECUs and receive information from sensors. An industrial device that is analogous to this would be a PLC.
- 2. Sensors. Sensors are devices that produce an output signal for the purpose of detecting a physical phenomenon. Typical sensors include position, temperature, distance, voltage, current, angle, or light. But there are thousands of types of sensors. Sensors also can include vision, ultrasound, or radar. Some but not all types of sensors include digital (two states, i.e., either ON or OFF), analog

(proportional signal), or "smart" sensors. Smart sensors typically refer to a sensor that has an onboard microprocessor and can communicate bidirectionally through a protocol like CANbus.

3. Actuators. In this document, refers to an electronically controlled component that produces a force, torque, or displacement.


- **4. GUI/UI.** User interfaces and graphical user interfaces are devices that the operator of the vehicle interfaces with. These typically are buttons, knobs, joysticks, switches, displays, and touchscreens. Like sensors, these can be "digital", "analog", or "smart".
- 5. Offboard/External. These devices are not a permanent part of the vehicle and can be connected either wired or wireless. For example, an external PC connected via USB, Ethernet, Cellular, or WiFi. These types of devices include smart phones, tablets, portable data acquisition systems, or external computers.

COMMUNICATION METHODS

Each type of device depending on its requirements, location, and function can communicate in various ways. For various reasons (reduce wiring expense, improve functionality, increase data speed, etc.) several methods of hardware and software communication protocols have been developed. Here are four prevalent methods:

1. Daisy Chain (Peripheral to Peripheral). The sensors and other peripherals are typically the most numerous and therefore the most expensive to implement in terms of wiring. There are also many levels of resolution and speed that may be required that have allowed lower cost protocols to be implemented for this category.

are between ECUs on the vehicle, there is often the need for high levels of reliability, high speed or bandwidth, functional safety, noise immunity, or other higher performance or added features. This level of communication has led to the development of new protocols for this purpose.

4. ECU to Offboard. When communicating from the vehicle to an off-board device, there are often few constraints since the connection is typically temporary and not required to withstand the operating environment of the vehicle application. Therefore, there are different protocols that have been developed for this method.

TYPES OF MOBILE COMMUNICATION PROTOCOLS

Protocol	Description	Speed	Safety Features	System	Application	Cost
SENT	Single Edge Nibble Transmission	25 Kbits/s		2-wire	P2P	\$
LIN	Local Interconnect Network	19.2 Kbits/s		Single Wire	P2P	\$
PSI5	Peripheral Sensor Interface	125 Kbits/s		Twisted pair	P2P	\$
FLEXRAY	Being phased out	10 Mbits/s	Deterministic Safety critical devices	2 or 4 wires or optical	E2E	\$\$\$
AUTOMOTIVE ETHERNET	LAN network	1 Gbits/s	Time Triggered Deterministic Safety critical devices	Twisted pair or optical	E2E	\$\$\$\$
CAN-J1939	11 and 29 bit	250 Kbits/s 500 Kbits/s		Twisted Pair	P2P E2E	\$\$
CAN Open	11 and 29 bit	1,000 Kbits/s		Twisted Pair	P2E	\$\$
CAN FD	Flexible Data rate	8 Mbits/s		Twisted Pair	E2O	\$\$
Bluetooth	Short Range	3 Mbits/s		Wireless	Vehicle to	\$
UWB	Short range	100 Mbits/s			cloud	\$
ZigBee	Short range	250 Kbits/s				\$
WiFi	Medium range	54 Mbits/s			Vehicle to	\$
Cellular (C-V2X)	Long range	50 Mbits/s			device	\$\$
WiMax	Long range	6 Mbits/s				\$\$\$
	Vehicle to	Offboard – Data	Acquisition / Real Tin	ne		
ХСР	CANbus	See Above	N/A	See Above	Vehicle to	
	Ethernet				DAQ	
	UDP					
	UART					
	POTENT	IAL FUTURE ADO	PTION / MIGRATION			
EtherCAT	Low latency / LAN	100 Mbits/s	Time Triggered Deterministic Safety critical devices	2 wire	E2E	

P2P – Peripheral to Peripheral / E2E – ECU to ECU / E2O – ECU to Offboard / P2E - Peripheral to ECU

PROS AND CONS OF MOBILE COMMUNICATION PROTOCOLS

Protocol	Pros	Cons
SENT (Single Edge Nibble Transmission)	 Simple, lightweight protocol suitable for sensors and actuators. Low latency and deterministic behavior. Reliable transmission over noisy environments. 	 Limited bandwidth and payload size. Unidirectional communication. Not suitable for complex data transmission or high-speed applications.
LIN (Local Interconnect Network)	 Low-cost solution for communication between electronic control units (ECUs) in vehicles. Simple and easy to implement. Supports master-slave communication topology. 	 Limited bandwidth and speed compared to other protocols. Unidirectional communication. Not suitable for high-speed or complex data exchange.
PSI5 (Peripheral Sensor Interface)	 Optimized for automotive sensor applications. Provides synchronous data transmission for accurate sensor readings. Supports high reliability and fault tolerance. 	 Limited adoption compared to other protocols. Restricted to sensor interface applications. Relatively complex implementation compared to other protocols.
FlexRay	 High bandwidth and deterministic communication suitable for real-time applications. Supports redundant communication channels for fault tolerance. Designed for complex data exchange in modern vehicles. 	 Higher implementation complexity and cost. Limited adoption compared to other protocols. Requires specialized hardware and expertise.
Automotive Ethernet	 High-speed, scalable communication suitable for bandwidth-intensive applications. Supports complex data exchange for advanced driver assistance systems (ADAS) and infotainment. Enables integration with standard Ethernet networks. 	 Higher cost compared to traditional automotive protocols. Requires reliable network infrastructure for optimal performance. Vulnerable to cybersecurity threats without proper security measures.
CAN-J1939	 Standardized protocol widely used in heavy-duty and commercial vehicles. Robust and reliable communication over noisy environments. Supports vehicle diagnostics and control applications. 	 Limited bandwidth compared to newer protocols. Not ideal for high-speed or bandwidth-intensive applications. Limited flexibility for real-time data exchange.
CAN Open	 Open-source protocol widely used in industrial and automotive applications. Supports standardized device profiles for interoperability. Enables plug-and-play functionality for networked devices. 	 Limited bandwidth and speed compared to newer protocols. Requires additional overhead for message arbitration and addressing. Not suitable for high-speed or time-critical applications.

Protocol	Pros	Cons
CAN FD (Flexible Data-	• Enhanced version of CAN with higher data	Limited adoption compared to traditional
Rate)	rates and larger payload sizes.	CAN.
	 Suitable for applications requiring 	 Increased complexity in hardware and
	increased bandwidth and throughput.	software implementation.
	 Backward compatible with existing CAN 	 Higher cost compared to standard CAN.
	networks.	
Bluetooth	 Widely adopted wireless protocol for 	Limited range compared to other wireless
	short-range communication.	protocols.
	 Low power consumption and seamless 	 Lower data transfer rates compared to Wi-
	connectivity.	Fi.
	 Supports various profiles for audio 	 Vulnerable to interference in crowded
	streaming, hands-free calling, and data	wireless environment.
	transfer.	
UWB (Ultra-Wideband)	 High data transfer rates over short 	 Limited range compared to other wireless
	distances.	protocols.
	 Precise location tracking and positioning 	 Higher implementation cost.
	capabilities.	 Limited adoption in automotive
	Low power consumption and resistance to	applications compared to other protocols.
	interference.	
ZigBee	Low power consumption and low data	Limited bandwidth and data transfer rates
	rates suitable for sensor networks and	compared to other protocols.
	home automation.	• Limited range compared to other wireless
	 Mesh networking capability for extended 	protocols.
	coverage and robustness.	Higher latency compared to some other
	Standardized protocol with	wireless protocols.
	interoperability between devices from	
	different manufacturers.	
Wi-Fi (IEEE 802.11)	High data transfer rates and range suitable	Higher power consumption compared to
	for in-car Wi-Fi hotspots and multimedia	other wireless protocols.
	streaming.	Vulnerable to interference in crowded
	Wide availability and compatibility with winter a infra structure	wireless environments.
	existing infrastructure.	May require additional security measures to provent upoutborized access
	 Supports seamless connectivity with smartphones and other devices. 	to prevent unauthorized access.
Cellular (C-V2X)		Boguiros subscription plans and opgoing
Cellular (C-V2X)	Wide coverage area and high-speed connectivity suitable for telematics,	 Requires subscription plans and ongoing service fees.
	remote diagnostics, and over-the-air	 Relatively higher latency compared to
	updates.	other wireless protocols.
		•
		signal attendation in remote areas.
	-	
	 Enables vehicle-to-everything (V2X) communication for advanced safety and autonomous driving applications. Continuously evolving network infrastructure with improvements in speed and reliability. 	 Vulnerable to network congestion and signal attenuation in remote areas.

Protocol	Pros	Cons
WiMax	 Long-range wireless broadband connectivity suitable for wide-area networks. High data transfer rates and scalability for various applications. Supports mobility and seamless handover between base stations. 	 Limited adoption and infrastructure compared to other wireless protocols. Higher implementation cost compared to Wi-Fi and cellular. Limited availability of compatible devices and equipment.
XCP (Universal Measurement and Calibration Protocol)	 Standardized protocol for real-time measurement, calibration, and diagnostics of ECUs. Efficient access to internal parameters for testing and calibration purposes. Supports high-speed data transfer and synchronization with measurement tools. 	 Requires specialized tools and expertise for implementation. Limited support for network communication compared to other protocols. May require additional security measures to prevent unauthorized access.

END MARKET APPLICATIONS OF MOBILE COMMUNICATION PROTOCOLS

Protocol	Construction	Agriculture	Mining	Military
LIN (Local Interconnect Network)	Basic control functions, sensor monitoring, and simple diagnostic applications.	Basic control functions, sensor monitoring, and simple diagnostic applications.	Basic communication between vehicle subsystems, interior controls, and basic monitoring functions in mining equipment.	Basic communication between vehicle systems, interior controls, and non- critical vehicle functions in military vehicles.
PSI5	Basic sensor interfaces, interior controls, and low-speed communication between vehicle subsystems.	Basic sensor interfaces, monitoring of environmental parameters, and low- speed communication in agricultural machinery.	Basic sensor interfaces, monitoring of equipment status, and low-speed communication in mining vehicles and equipment.	Basic sensor interfaces, monitoring of vehicle subsystems, and low- speed communication in military vehicles and equipment.
Automotive Ethernet	Advanced vehicle control systems, telematics, and fleet management applications.	Precision farming systems for data- intensive applications such as GPS guidance, automated steering, and real-time monitoring.	Remote monitoring and control of heavy machinery, asset tracking, and predictive maintenance systems.	Communication between onboard systems, surveillance, and command and control applications.
CAN-J1939	Engine control, transmission control, hydraulic controls, and vehicle diagnostics.	Control of implements, monitoring sensor data, engine control, and implementing precision agriculture applications.	Engine control, transmission control, hydraulic controls, and vehicle diagnostics.	Communication between vehicle systems, weapon systems, and onboard electronics.
CAN Open	Vehicle control systems, hydraulic controls, and onboard diagnostics for reliable communication between components and subsystems.	Precision agriculture equipment for controlling implements, monitoring sensor data, and implementing automated guidance systems.	Engine control, transmission control, and condition monitoring applications.	Communication between vehicle subsystems, weapon systems, and onboard electronics.
CAN FD (Flexible Data- Rate)	Integrated into vehicle control systems, hydraulic controls, and onboard diagnostics for real-time data exchange and fault detection.	Controlling implements, monitoring sensor data, and implementing automated guidance systems.	Engine control, transmission control, and condition monitoring applications.	Communication between vehicle subsystems, weapon systems, and onboard electronics.

Protocol	Construction	Agriculture	Mining	Military
Bluetooth	Onboard entertainment systems, hands-free communication, and diagnostic tools for wireless connectivity.	Wireless data transfer between sensors, controllers, and mobile devices.	Wireless communication between operators, supervisors, and equipment monitoring systems in underground and surface mining operations.	Short-range communication between personnel, vehicles, and handheld devices in tactical environments.
UWB (Ultra- Wideband)	Precise location tracking of personnel, assets, and equipment on construction sites.	Accurate positioning and tracking of agricultural machinery, automated guidance systems, and crop monitoring applications.	Personnel tracking, asset management, and safety monitoring in underground mining operations.	Indoor positioning, asset tracking, and situational awareness in military facilities and urban environments.
ZigBee	Wireless sensor networks, remote monitoring, and control of automation systems.	Wireless sensor networks, environmental monitoring, and precision agriculture applications.	Wireless sensor networks, personnel tracking, and environmental monitoring in mining operations.	Wireless sensor networks, perimeter security, and environmental monitoring in military installations and facilities.
Wi-Fi (IEEE 802.11)	Onboard entertainment systems, telematics platforms, and site-wide Wi-Fi networks for communication and data exchange.	Wireless data transfer between field sensors, machinery, and management systems for real-time decision- making and precision agriculture applications.	Communication between equipment operators, supervisors, and central control systems, as well as for real-time monitoring of equipment health and performance.	High-bandwidth communication between vehicles, command centers, and deployed personnel, as well as for streaming video and data from remote sensors and drones.
Cellular (C- V2X)	Fleet management systems, remote diagnostics, and telematics platforms for real-time monitoring and asset tracking.	Remote monitoring of equipment, precision agriculture applications, and data exchange between farm machinery and cloud-based platforms.	Remote monitoring of equipment health, predictive maintenance, and communication between mobile assets and central control systems.	Communication between vehicles, command centers, and deployed personnel, as well as for remote surveillance and reconnaissance.

Protocol	Construction	Agriculture	Mining	Military
WiMax	High-speed wireless	Broadband internet	High-speed data	High-bandwidth
	broadband connectivity	access, remote	communication	communication
	at construction sites,	monitoring, and data	between mining sites,	between military
	remote offices, and	exchange in rural	central offices, and	installations, command
	temporary work	agricultural areas with	remote operations.	centers, and deployed
	locations.	limited wired		personnel in remote
		infrastructure.		areas.
XCP (Universal	Vehicle diagnostics	Vehicle diagnostics,	Equipment diagnostics,	Vehicle diagnostics,
Measurement	tools, calibration	calibration of	calibration of mining	calibration of military
and	equipment, and data	agricultural machinery,	machinery, and real-	vehicles, and real-time
Calibration	acquisition systems for	and real-time	time monitoring of	monitoring of
Protocol)	testing and validation	monitoring of sensor	critical parameters.	performance
	of vehicle subsystems.	data.		parameters in military
				applications.
EtherCAT	Real-time control of	Controlling agricultural	Real-time control of	High-speed data
	automation	machinery, monitoring	mining equipment,	acquisition, control
	components, motion	sensor data, and	conveyor systems, and	systems, and real-time
	control, and data	implementing	material handling	monitoring of critical
	acquisition	automated control	operations.	equipment and
	applications.	systems.		processes in military
				applications.

GLOSSARY OF TERMS

Automotive Ethernet: A high-speed, Ethernet-based communication protocol increasingly used in modern vehicles for high-bandwidth applications such as advanced driver assistance systems (ADAS), infotainment, and vehicle-to-everything (V2X) communication.

Baud Rate: The speed at which data is transmitted over a serial communication link, typically measured in bits per second (bps).

Bluetooth: A wireless technology standard for exchanging data over short distances between fixed and mobile devices. It's commonly used in vehicles for hands-free calling, audio streaming, and data transfer between smartphones and in-car systems.

Bus Off: A state in which a node on a CAN bus is unable to communicate due to errors or faults, typically resulting in disconnection from the bus.

CAN (Controller Area Network): A robust vehicle bus standard designed to allow microcontrollers and devices to communicate with each other within a vehicle without a host computer.

CAN Bus Arbitration: The process by which multiple nodes on a CAN bus contend to transmit messages based on priority, determined by the message identifier.

Cellular (LTE, 5G): Cellular network standards such as LTE (Long-Term Evolution) and 5G are increasingly used in vehicles for connected services, telematics, and remote diagnostics. They enable high-speed internet connectivity and communication with cloud-based services.

Checksum: A value calculated from the data transmitted to detect errors in transmission, typically added to the end of a message frame.

Diagnostic Trouble Code (DTC): An alphanumeric code stored in a vehicle's computer system that indicates a problem or malfunction within the vehicle.

DSRC (Dedicated Short-Range Communications): A wireless communication protocol designed for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication, primarily for safety applications such as collision avoidance and cooperative adaptive cruise control.

DLC (Data Length Code): A field in CAN messages that specifies the number of bytes of data contained within the message frame.

ECU (Electronic Control Unit): A microcontroller-based system within a vehicle responsible for controlling various electrical systems and subsystems.

FlexRay: A high-speed automotive network communications protocol designed to handle complex data communication in modern vehicles.

Frame: A unit of data transmission in a communication protocol, consisting of a header, data payload, and possibly a checksum for error detection.

Gateway: A device or software component that acts as an interface between different communication protocols or networks within a vehicle.

LIN (Local Interconnect Network): A low-cost, serial communication protocol used for communication between components in vehicles.

LIN Master/Slave: Devices within a LIN network where the master node initiates communication and controls the data flow, while slave nodes respond to commands from the master.

MOST (Media Oriented Systems Transport): A high-speed multimedia network protocol used in vehicles to transport audio, video, and control data between various multimedia components.

OBD (On-Board Diagnostics): A standard protocol used to retrieve diagnostic information from a vehicle's computer systems, typically through a connector located under the dashboard.

SAE J1939: A standard used for communication and diagnostics among vehicle components, primarily heavy-duty and commercial vehicles.

UDS (Unified Diagnostic Services): A diagnostic communication protocol used in automotive systems to communicate with electronic control units (ECUs) in the vehicle.

Wi-Fi (IEEE 802.11): A wireless networking technology that allows devices to communicate wirelessly over short distances. In vehicles, it's used for in-car Wi-Fi hotspots, over-the-air updates, and wireless streaming of audio and video content.

XCP (Universal Measurement and Calibration Protocol): A standardized protocol used for measurement, calibration, and diagnostics of electronic control units (ECUs) in vehicles. XCP enables efficient and real-time access to ECU internal parameters for testing and calibration purposes.

TASK FORCE PARTICIPATION

Mobile Communication Protocols Working Group

The following people served on the working group with primary responsibility for the writing, editing and review of this document.

- Dipanshi Batra, Barksdale Control Products
- Adam Livesay, Elevat
- Matthew Via, HED
- Eric Lanke, NFPA
- Michael Brooks, OPS Controls
- Chris Vandermeer, Scanreco
- Mike Terzo, Xirro

Technology Task Force, Mobile Applications

The following people participated in at least one of the meetings where the concept for this document was discussed and/or early drafts were reviewed.

- Ajay Aripirala, A. W. Chesterton
- Brian Rhode, Afton Chemical Corporation
- Pavan Kumar, Ajax Engineering
- Ada Leung, Anfield Industries
- Dan Bagley, B&B Management Labs
- Anhadveer Khokar, Barksdale Control Products
- Dhanraj Shelke, Barksdale Control Products
- Jon Frey, Bosch Rexroth Corporation
- David Stevenson, Bucher Hydraulics
- Edgar Torres, Bucher Hydraulics
- Jason Yu, Bucher Hydraulics
- Jessica Horn, Bucher Hydraulics
- Steve Miller, Bucher Hydraulics
- Sharvari Divey-Teall, Crown Equipment
- Dominic Catanzarite, Daman Products
- Mike Betz, Danfoss
- Adam Livesay, Elevat
- Mark Petit, Evonik
- Harley Quarnstrom, Fluid System Components
- Logan Turgeon, Fluid System Components
- Matt Loeffler, FORCE America
- Ron Akers, Gefran
- Chuck White, Hallite Seals
- Chad Repp, HED

- Matthew Via, HED
- Paul Ludwig, HED
- Michael Daker, Hengst
- Tracy Long, Hengst
- Ben Holter, Husco
- Chris Kolbe, HYDAC
- Marcus Herrera, HYDAC
- Russ Schneidewind, Hydraforce
- Travis Schmidt, Hydraforce
- David Shier, Hydro-Gear
- Charles Schreiner, Hydrotech
- Narendra Gupta, Hyster-Yale Group
- Dylan Sladek, Hyundai
- John Suh, Hyundai America Technical Center (HATCI)
- Adam Vogts, IFP Motion Solutions
- David Tetzlaff, Innovative Hydraulics
- Brian Steward, Iowa State University
- Paul Marvin, John Deere
- Michael Miles, KersTech, Inc.
- Roy Schmoutz, Komatsu
- Patrick Green, Kraft Fluid Systems Inc.
- Keith Houser, Ligon Hydraulics
- Greg Shtrahman, Marzocchi Pumps
- Paul Michael, Milwaukee School of Engineering
- Dave Geiger, Moog
- Dave Mayer, Motion
- Jared Amundson, Norgren
- DJ O'Konek, Nott Company
- John Tudor, Oilgear
- Brandon Flick, OPS Controls
- Michael Brooks, OPS Controls
- Howard Zhang, Parker Hannifin
- Mark Schoessler, Parker Hannifin
- Jesse Arias, QP Hydraulics
- Matt Ogden, QP Hydraulics
- Jay Dalal, ROSS Controls
- Chris Vandermeer, Scanreco
- Tom Grotophorst, Thermal Transfer Products
- Joey Kadziolka, Tigercat
- Mike Magsam, Trelleborg Sealing Solutions

- Stephen Garden, Trelleborg Sealing Solutions
- Trevor Combs, Trelleborg Sealing Solutions
- Diego Guidi, VIS Hydraulics
- Rick Guidish, VIS Hydraulics
- Sara Baldoni, VIS Hydraulics
- Enrico Baiocchi, Walvoil Fluid Power
- Mary Gannon, WTWH Media
- Mike Terzo, Xirro